

Microfluidics
 "Microfluidics" stands as a summation of the extraordinary properties that liquids reveal when confined within microscale boundaries, and of the use of these properties in miniaturized, microfluidic systems.
- laminar flow. no turbulences, mixing is diffusion-limited when Re < 1, the flow is laminar (nearly always the case in microfluidics) $\frac{f_i}{f_v} = \frac{\rho UL}{\eta} \equiv \text{Re}$
- small volumes. 1 nL = 100 × 100 × 100 μm ³ but surface/volume ↑ 1 pL = 10 × 10 × 10 μm ³
– small diffusion times / fast processes. TNF- α diffuses along 10 μm in ~1 s urea diffuses along 10 μm in ~72 ms
T. M. Squires, S. R. Quake, <i>Rev. Modern. Physics</i> , 2005 , <i>77</i> , 977-1026.
18 IBM Research - Zurich 16-Jun-10

Writing using a MFP

 Proteins in the processing liquid deposit on the scanned surface

• no drying artifact due to the presence of the immersion liquid (biological buffer)

■ moving quickly the MFP makes the immersion liquid inserting below the processing liquid → non-writing mode!

IEM

