nano-tera.ch

Gästehaus Nidelbad, June 14th, 2010

Developing Subcutaneous Fully-implanted Biochips for Remote Monitoring of Human Metabolism

SANDRO CARRARA

ÉCOLE POLYTECHNIQUE Laboratoire des Systèmes Intégrés (LSI)

NT project Implantable-IRONIC

Project Main Goals

Design implantable/wearable systems for continuous monitoring of human metabolism

System Level Integration

Micro/Nano/Bio technology integration

State-of-the-Art

A. Menarini Diagnostics, Florence

In/Out tubing

Almost only for Diabetes

Almost only for Glucose

GlucoDay® and GlucoMenDay® consist of a micro-pump and a biosensor coupled with a micro-dialysis system

New sub-cutaneous system

Cylinder: 1-2 mm in diameter Below 2 cm in length

Chip packaging in cylindrical shape

Implanted chip only for sensing and short range transmissions

Porous MEMS/NEMS membrane to ensure bio-compatibility/fluidics

nerve fiber blood and

lymph vessels

Netics Sweat gland Pacinian corpuscle

Fully implanted system with fluidics, sensors, electronics, antenna, data processing and transmission

Innovative aspects

- Multi-panel metabolite detection New array-based biosensors
- Ultra-low power data processing and transmission electronics

Power transmission

• Reliable distributed data processing In situ and off line

Direct benefits include lower cost and more accurate health monitoring and support for personal nutrition studies

Sensor array architecture

Probe enzymes

Different enzymes sense different target metabolites

Different outcomes for

Rate of efficacy with standard drug treatment

)	25%	1
•	30%	1
•	40%	2
,	47%	
5	48%	1
5	50%	1
)	50%	I
)	52%	2
5	57%	100
1	60%	
5	60%	
I	60%	
I	62%	2.15
		1.00

For depression, the data apply specifically to the drug class known as selective serotonin reuptake inhibitors.

Source: Brian B. Spear, Margo Heath-Chiozzi, and Jeffrey Huff, "Clinical Application of Pharmacogenetics," *Trends in Molecular Medicine* (May 2001).

System Biology is not enough

Point-of-Care in Personalized Therapy

The Development of Monitoring Point-of-Care Devices is a key-factor for succeeding in Personalized therapy

The Motivation

50 \$ (machinery)0.05 \$ the single strip

AFFYMETRIX,

P450 for Drugs Monitoring

Drugs detection from Voltammetry

Drugs detection from Amperometry

Problems on Detection Limits

S. Joseph et al./Biochemical Pharmacology 65 (2003) 1817-1826

Detection of verapamil by 3A4, an antihypertensive drug, was from 400 µM to 3mM while its therapeutic range is below 0.3 µM

An improved P450/Electrode coupling by using Carbon Nanotubes

S.Carrara, et al., Biosensors and Bioelectronics (2010) submitted

Scanning Electron Microscopy clearly show the P450 wrapping onto each single Multi-Walled Carbon Nanotube

The improved Sensitivity

S.Carrara, et al., Biosensors and Bioelectronics 24 (2008) 148-150

The P450 11A1 performance in detecting Cholesterol is Enhanced by a factor 10x by using MWCNT

Drop casted CNT

Emission from CNT in Water conditions

Electron emission from CNT is enhanced in presence of water molecules but a plateau is easily reached for few water molecules

CNT as quantum emitters

P450 proteins and MWCNTs deposited onto Screen-Printed electrodes and the models used for Monte-Carlo Simulations

CNT randomly distributed and their Electron-Transfer

Distribution of CNTs randomly deposited on a corrugated substrate by Monte Carlo Simulations and comparison between lateral and tip Electrons-Transfer Emission

Multi-Walled Carbon Nanotubes will be directly integrated onto the Silicon Substrate hosting the CMOS front-end required for the P450 based detection

The improved sensitivity on Drugs detection

S. Carrara et al., Conference Proceedings of IEEE CME2009, Tempe (US), 9-11, April, 2009

P450 2B4 performance in detecting Benzphetamine is enhanced by a factor 4x by using MWCNT

Improved Detection Limit on Drugs detection

S.Carrara et al. / unpublished

Cyclophosphamide (CP), an anti-cancer agent, is detected by P450 3A4 in its therapeutic range

S.Carrara, et al., Biosensors and Bioelectronics (2010) submitted Cyclophosphamide (CP) detected in Human Serum within the therapeutic range

Drugs detection in the Pharmacological Range

Cytochrome	Drug	Measured Range	Therapeutic range	Best Sensitivity
		(uM)	(uM)	nA/uM mm^2
	Benzphetamine	500-5000	0-0.074	2.14 (chronoamperometry)
2B4	Amynopirine	100-500		0.01
		0-500	2.6-76.6	0.63
3A4	Dextromethorphan	100-500	0-0.3	0.12
	Erytromycin	0-75	0-68	0.26
	Newwowe	100 500	04 545	0.05
	Naproxen	100-500	21-515	0.25
2C9	Ibuproten	100-500	0.48-291	0.03
	Flurbiprofen	100-500	0.04-41	0.08

Applications in Breast Cancer

Drugs	Pharmacologica	Good concentration ranges for the sensitivity of our technology !		volved in drug lism ⁽¹⁾
Cyclophosphamide ^{(2),(3)}	2,68-76,6 µM			
Etoposide ^{(4),(5)}	33,98-101,94 μM	[314 1A2 (-)	
Ifosfamide ⁽²⁾	10-160 μM		3A4 2B6	
Mitoxantrone ⁽⁶⁾	1,84-3,31 µM		3A4 1B1 (-)	
Tegafur ⁽⁷⁾ (contain Fluorouracil)	1 μM-10 μM		1A2 2A6	

The CYP in the table are sorted according to their importance in the drug metabolism.

The simbol (-) means that the CYP isoform is involved as the minor enzymatic components in the drug metabolic pathway.

Breast cancer drugs cocktail

•cyclophosphamide, methotrexate, and fluorouracil (CMF)⁽⁸⁾⁽¹¹⁾;

•fluorouracil, doxorubicin, and cyclophosphamide (FAC)⁽⁸⁾;

•cyelophosphamide. doxorubicin and 5-fluorouracit (CAF)⁽⁹⁾;

•fluorouracil, epirubicin, and cyclophosphamide (FEC)⁽⁸⁾⁽¹¹⁾⁽¹²⁾;

•fluorouracil, doxorubicin, and cyclophosphamide ⁽¹¹⁾⁽¹²⁾;

•Ifosfamide, Carboplatin, Etoposide (ICE)⁽⁹⁾;

•ifosfamide, metho-trexate and 5-fluorouracil (IMF)⁽⁹⁾;

•cyclophosphamide, mitoxantrone, and etoposide⁽¹²⁾.

[8] New England Journal of Medicine, The [0028-4793] Hortobagyi yr:1998 vol:339 iss:14 pg:974 GABRIELN. HORTOBAGYI, M.D.
[9] Cancer Chemother Pharmacol (1999) 44 (Suppl): S26±S28
A.Y. Chang, L. Hui, R. Asbury, L. Boros, G. Garrow, J. Rubins
[10] *Journal of Clinical Oncology*, Vol 22, No 12 (June 15), 2004: pp. 2284-2293
M. Ayers, W.F. Symmans, J. Stec, A.I. Damokosh, E. Clark, K. Hess, et al.
[11] *Journal of Clinical Oncology*, Vol 21, Issue 13 (July), 2003: 2600-2608
Manfred Kaufmann, Gunter von Minckwitz, Roy Smith, Vicente Valero, et al
[12] The Lancet [0140-6736] Weiss yr:2000 vol:355 iss:9208 pg:999 *Raymond B Weiss, Robert M Rifkin, F Marc Stewart, Richard L Theriault, et al.*

The Problem of multi-panel arrays response

Different Drugs give peaks in different positions

Substrate/inhibitor of CYP2C9	K_m (μ M)	K_i (μ M)	CYP2C9 (mV)	$E_{\rm mid}$ CYP2C9 + substrate (mV)
Torsemide (s)	11.4		-41	-19
Diclofenac (s)	6.8		-41	-41
Tolbutamide (s)	120 ^a		-41	-37
S-Warfarin (s)	6 ^b		-41	-36
Sulfaphenazole (i)		0.1 ^c	-41	-41
CO _(g)			-41	8

D.L. Johnson et al. / Biochemical Pharmacology 69 (2005) 1533-1541

The cytochrome P450 2C9 presents peak shifts in the range of tens of mV by changing drug substrates

Multiple-Drugs Detection

S. Carrara et al., Conference Proceedings of IEEE CME2009, Tempe (US), 9-11, April, 2009

The same P450 may detects more drug compounds

The Heterotropic Kinetics

HETERO ACTIVATION

D1

D2

Different amounts of CP and DX result in two very-well defined peaks once detected by P450 3A4
Multiple drugs detection: CYP2C9

Naproxen (NP) and Flurbiprofen (FL) also result in two very-well defined peaks once detected by P450 2C9

Peaks Amplitude is affected by the other drugs

Substrate/inhibitor of CY	YP2C9	K_m (μ M)	K_i (μ M)	CYP2C9 (mV)	$E_{\rm mid}$ CYP2C9 + substrate (mV)				
Torsemide (s)		11.4		-41	-19				
Diclofenac (s)		6.8		-41	-41				
Tolbutamide (s)		120 ^a		-41	-37				
S-Warfarin (s)		6 ^b		-41	-36				
Sulfaphenazole (i) CO _(g)	Dependence from the other $dr \underline{u}_{g_1}^{41}$ concentrations								
		ļ	$(V - V)^2$	D.L. Johnson et al./Bioche	mical Pharmacology 69 (2005) 1533–1541				
$i(V) = i_{C}(V)$	$V') + \sum_{\forall k}]$	$\prod_{j\neq k} A_k \Big(\Big[C_j \Big] \Big]$	$\Big)_{k}e^{-\frac{(v-v_{k})}{\sigma_{k}^{2}}}$						

Charging current

Faradic currents

The Gaussian decomposition in cytochrome P450 based detection has to account for the heterotropic kinetics

required for hetero activation and partial inhibition

Further Perspective: multi-panel biochip

The irredundant Cover problem

Irredundant Cover set {s₁, s₂, s₃} Solution of the irredundant cover problem provides improved specificity at system level

Sensor array architecture

Probe enzymes

Different enzymes sense different target metabolites

Peroxide Detection

- [9] X. Cui, Biosensors and Bioelectronics, vol. 22, pages 3288-3292, 2007
- [11] M. Yang, Nanotechnology, vol. 19, page 075502, 2008
- [12] W.J. Sung, Sensors and Actuators B, vol. 114, pages 164-169, 2006
- [13] Y. Tsai, Sensors and Actuators B, vol. 125, pages 474-481, 2007

The peroxide detection is highly improved by using carbon nanotubes

C.Boero, S.Carrara et al. / IEEE CME 2010, submitted

The Glucose detection is highly improved by using carbon nanotubes

C.Boero, S.Carrara et al. / IEEE CME 2010, submitted

The Lactate detection is highly improved by using carbon nanotubes

Detection of 4 mM of glucose

The epoxy-enhanced polyurethane membranes provide long-term stability for implanted biochip

Bio/CMOS interface

The interface between the CMOS circuit and the bio sample needs to be deeply investigated before design

Required Blocks

The basic with Op. Amp.

CMOS front-end demands

- 1. Precise Current measurements
- 2. Multiplexing for different molecules
- 3. Reliability in Temperature
- 4. Reliability in pH
- 5. Multiplexing Molecular Detection with T and pH

1. Precise Current measurements

Time Baased Potentiostat

Current-to-frequency converter

2. Multiplexing for different molecules

Different working electrodes are multiplexed to the current-to-frequency converter

3. Reliability in Temperature

3. Reliability in Temperature

Figure 7. The circuit for the measure of Temperature

For VLSI, FET Transistor based circuits are more suitable than BJT

4. Reliability in pH

In CV, The peak position is pH dependant

4. Reliability in pH

Figure 6. The ISFET sensors proposed by Premanode

The Ion-Sensitive FET measure the solution pH

5. Multiplexing Molecular detection with T and pH

Figure 8. The bloks-scheme of the multiplexing

The switches also multiplex the T and pH measure

Design implantable/wearable systems for continuous monitoring of human metabolism

Data/power transmission

- The implanted sensors are remotely powered
- Bi-directional communication between external and internal units
- Ultra low power protocol and modulation
- Specific antenna design

Energy Scavenging Strategies

Ref.	Coil Area (λ = 10 mm²)	Carrier Frequency	Data Transmission	Bit Rate	Power Consumption	Efficiency	Distance	Measurement Site	Implantation Site
[8]	Tx: 7.8 λ Rx: 1.7 λ	4 MHz	twd Int.: PWM-ASK twd Ext.: ASK	twd Ext.:125 kbps	10 mW		5 mm	Air	Neural Recording System
[9]	Tx: 196.3λ Rx: 31.4 λ	4 MHz	twd Ext.: LSK	5 kbps	6 mW		25 mm	Water Bearing Colloids	Various
[10]	Tx: 13200λ Rx: 25.2λ	1 MHz			150 mW	1% (min)	205 mm	PVC Barrel	Stomach
[11]	Tx: 184.9λ Rx: 10λ	1 MHz			10 mW	18.9% (max)	5 mm	Air	Cerebral Cortex
[12]	Tx: 282.7 λ Rx: 31.4 λ	0.7 MHz	twd Int.: ASK twd Ext.: LSK	twd Int.: 60 kbps twd Ext.: 60 kbps	50 mW	36% (max)	30 mm		Orthopaedic Implant
[13]	Tx: 31.4 λ Rx: 5 λ	10 MHz	twd Int.: ASK twd Ext.: BPSK	twd Int.: 120 kbps twd Ext.: 234 kbps	22.5 mW in vitro ≈ 19 mW in vivo		15 mm	Rabbit	Muscles
[14]	Tx: 196.3 λ Rx: 3.5 λ	5 MHz	twd Int.: OOK	100 kbps	5 mW		40 mm		Neural Stimulator
[15]	≈Rx:112.5λ	6.78 MHz	twd Int.: OOK twd Ext.: LSK	twd Ext.:200 kbps	120 mW	20% (max)	25 mm	Dog Shoulder	Muscolar Stimulator
[18]	Tx: 40 λ Rx: 0.4 λ	915 MHz			0.14 mW	0.06%	15 mm	Bovine Muscle	Various

(8) T.Akin et al., "A wireless implantable multichannel digital neural recording system for a micromachined slave electrode", IEEE J. Solid -State Clic., vol.88, pp. 109-118, jan 1998.
(9) C.Sauer et al., "Power Harvesting and Telemetry in CMOS for implanted Devices", IEEE Trans on Clic. ults and Systems, vol.52, n.12, pp.2605-2618, 2005.

[10] B. Lenaerts et. al., "An inductive power link for a wireless endoscope", *Biosensors and Bioelectronics*, vol.22, pp. 1890–1895, 2007

[11] K.M. Silay et.al., "Load Optimization of an inductive Power Link for Remote Powering of Biomedical Implants", IEEE Proc. of International Symposium on Clicuits and Systems 2009, pp. 588-586, May 2009.

[12] B. Lenserts et. al., "An inductive power system with integrated bi-directional data-transmission", Sensors and Actuators A, vol. 115, pp.221-229, 2004

[18] J. Parramonetal, "ASIC-based battery less implantable telemetry microsystem for recording purposes", Eng. In Ned. and Bio. Soc., in Proc. of the 19th Annual Int. Conf., vol.5, pp. 2225-2228, 1997.

[14] G. Gud na son et al., "A Chip for an implantable Neural Stimulator", Analog Integrated Circuits and Sig nal Processing, vol.22, pp.81-89, 1999

[15] B. Smithet al., "An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle", IEEE Thans. on Biomed. Eng., vol.4.5, p. 468-475, 1998.
[18] A.S.Y. Poon et al., "A mm-sized implantable Power Receiver with Adaptative Link Compensation", Stanford University

Powering Patch

An antenna very close to the chip is required for the remote powering

Multiple Subcutaneous Sensor nodes

Different nodes in RF communication with a wireless portable devices

Faraday Law: The induced electromotive force in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit.

$$\left|\mathcal{E}\right| = \left|\frac{d\Phi_B}{dt}\right|$$

Data Transmission

Using inductive coupling to transmit power to the implanted sensor, it is possible to realize a **bidirectional data communication**.

Image from: *M.Catrysse et. al., "An inductive power system with integrated bi-directional data-transmission", Sensors and Actuators A, vol. 115, pp.221–229, 2004*

Positioning within Nano-Tera.ch

- Large-scale data acquisition system: Real-time data provided by nano-sensors
- Synergy:

Sensors, electronics, MEMS fluidics, data processing and communication

- Collaborative effort: EPFL, ETHZ, EMPA, IRB
- Industrial participation: Menarini, Nestle, ACS
- Social relevance:

 View
 View

Low cost and more accurate health monitoring

Implantable-IRONIC Summary

- Implantable/wearable system for health monitoring With applications also to personal nutrition
- Flexible and programmable platform
 - New array-based *nano-structured* sensors
 - New low-power electronics for data acquisition and transmission
 - New real-time algorithms for data clustering
- Design, fabrication and test of demonstrators
 Exploit FDA-approved implantable device by Menarini
 Roadmap for realization and test in mice

Sensor/electronic/software co-design

- Sensors require specialized low-current detectors Sensors designed to operate at low-voltage Low-power sensor/electronic co-design
- Arrays yield multiple measurements
 Different target molecules to be simultaneously detected
 Redundancy is used to enhance dependability
- Data sampling and reduction before transmission Low-effort *in situ* data processing
- Off-line algorithms for data disambiguation Avoid false positives
 - Cluster data to provide signature for diagnosis

Conclusions Nano/Bio/CMOS Co-Design!

New paradigms for Nano-Bio-CMOS co-design are required to succeed in distributed diagnostics

Excellent CMOS technology is not sufficient if molecules are not doing their own job at the Bio/CMOS interface!

Thanks to the Partners

Partners contribution in terms of project technologies

Thanks to my close collaborators

- Andrea Cavallini
- Camilla Bai-Rossi
- Cristina Boero
- Jacopo Olivo
- Daniel Torre
- Daniela De Venuto
- Irene Taurino
- Alberto Tagliafierro
- Victor Erokhin
- Giovanni De Micheli

Thank you for your attention!

References on biosensors:

Sandro Carrara Ph.D EPFL - Swiss Federal Institute of Technology in Lausanne - Switzerland

Web: http://si2.epfl.ch/~scarrara/ email: sandro.carrara@epfl.ch

- 1. Proceedings of IEEE/Bio-CAS 2010, submitted
- 2. Biosensors and Bioelectronics, (2010) submitted
- 3. Proceedings of the IEEE/ICME 2009, accepted
- 4. Biosensors and Bioelectronics, 24(2008) 148-150
- 5. Proceedings of IEEE/Bio-CAS 2008
- 6. Biosensors & Bioelectronics, 21 (2005) 217-222
- 7. Biosensor & Bioelectronics, 19 (2004) 971-976