

swiss scientific initiative in health / security / environment systems

EPFL Press Release

A CMOS-Compatible **Chip-to-Chip Integration Platform**

Yuksel Temiz^{1,2}, Michael Zervas¹, Yusuf Leblebici¹

¹Microelectronic Systems Laboratory (LSM) - Ecole Polytechnique Fédérale de Lausanne (EPFL) ²Laboratory of Life Sciences Electronics (CLSE) - Ecole Polytechnique Fédérale de Lausanne (EPFL)

INTRODUCTION

In this paper, a CMOS-compatible chip-to-chip (C2C) 3D integration platform is presented. The developed technology allows reconstituting a wafer from diced and thinned chips. Then, chip-to-chip bonding and TSV fabrication steps are accomplished in wafer-level. Two dummy chips are successfully bonded, and TSVs with parylene sidewall passivation cmos and electroplated Cu metallization are fabricated. The resistance measurements demonstrate average TSV resistance of 0.5 Ω . The proposed technique introduces a simple and low-cost solution not only for 3D integration technology but also for applications involving CMOS post-processing in general. Y. Temiz et al., ECTC'12

BEOL

Top Al

Die-Level 3D Integration

• Back-to-face type via-last C2C integration process. Identical or heterogeneous chips can be post processed after dicing. The TSVs are fabricated after alignment and bonding.

Fabricated Devices

• Diced chips are thinned down to 50µm and embedded into a carrier wafer by parylene deposition.

(Die Photo)

Chip front-side

Resistance Measurements

- Each chip comprises four 32-bit LEON3 processors, memory, and 3D Networkon-Chip.
- 120 TSVs: 54 Power TSVs and 66 Signal TSVs

