

swiss scientific initiative in health / security / environment systems

High pressure gas storage vessel based on carbon fiber braided architectures for hydrogen fuel cell vehicle application.

Paul Velut¹, Robert Tween¹, Blaise Friderici¹, Yves Leterrier¹, Jan-Anders Månson¹, Rexhep Gashi², Bahaa Roustom²,

- (1) Laboratoire de Technologie des Composites et Polymères, EPFL, CH-1015 Lausanne
- (2) Belenos Clean Power Holding Ltd, C/o EM Microelectronic-Marin, Rue des sors 3, 2074 Marin-Epagnier

Development of a high pressure storage vessel based on Carbon Fiber Reinforced Plastic with self-sensing liner for lightweight vehicles.

Objectives and Challenges

600

[edw]₄₀₀

300 a

Abacus

Evaluation of novel carbon fibre architecture geometry dependant fibre volume CFRP shell fraction and orientation as an alternative to for high pressure storage vessel metal (submitted to hydrogen embrittlement).

- First demonstrator : 1L 100 bars
- Final demonstrator : 100L 700 bars \bullet \rightarrow 700km autonomy

Aluminum connectors Diffusion barrier liner

Carbon Vessel Demonstrator Manufacturing

PA liner and aluminum connectors

Carbon braid

over the PA liner

Mechanical analysis

Elastic and breaking behavior were determined both by testing and calculation for several braid configurations. These results are then injected in the numerical model.

Braid angle

Resin Transfer Molding : Fabric impregnation with epoxy resin

RTM process

The impregnation of the fabric by the resin is driven by DARCY'S LAW.

The **Permeability** is linked to the fabric type and architecture. As well as to the Volume fraction. **Pressure** in the mold can be adjusted.

The **Viscosity** is a resin property driven by temperature. Curing time of the resin is also shortened as the mold is heated.

- RTM rate of production is higher than concurrent method. - Composite material of high quality is achieved : - Low porosity content - High Fibre Volume fraction (55%)

The braid angle is strongly dependent of the geometry.

Tensile test for elastic and strength measurement [ASTM-D3039]

Numerical simulation

Mechanical properties, fibers angles and volume fractions are injected in a numerical model. ACP, the composite module for ANSYS was used.

Conclusions & Future work

• Manufacturing process with braid architecture was demonstrated.

- A method was implemented to simulate the braid including variable Vf and orientation
- An optimal braid will be designed and produced by a braider.
- Cost modelling will be performed for evaluation with existing solutions.
- Self sensing liner will be integrated.

Demonstrator simulation

Result comparison between the model and the demonstrator

Demonstrator vessel instrumented with strain gauges

Correlation test/simulation at 8 bars

Belenos full size demonstrator

140

Research of an optimal shape for the final demonstrator with an axisymmetric model.

Acknowledgements

Swiss National Science Foundation