

Novel high performing fuel cell membranes based on fluorinated polymers

L. Bonorand¹, P. Reichel¹, J. Thut¹, L. Gubler¹, G.G. Scherer¹, Y. Leterrier², J. Thivolle², F. Oliveira², J.-A. E. Månson²

¹ Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI

² Laboratoire de Technologie des Composites et Polymères (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne

Polymer Electrolyte Fuel Cell (PEFC)

Structure-Property Relationships

Viscoelastic Properties of Films and Membranes

Enhanced Membrane Durability (60 cm² stack)

Voltage Degradation	0.17 A/cm ²	0.85 A/cm ²
XL-100	5 μV/h	10 µV/h
PSI Gen2	3 μV/h	16 µV/h

Benchmark used under dynamic protocol : DuPont Nafion® XL-100

State of the art commercial PFSA Membrane (Mechanically reinforced + chemically stabilized)

Membrane	MEA #	Failure [h]	Failure Criteria
DuPont	MEA 1	1980 h	Excessive crossover
Nafion®	MEA 2	927 h	Excessive crossover
XL-100	MEA 3	927 h	Excessive crossover
	MEA 4	1161 h	Excessive crossover
PSI Gen2	MEA 1	> 2000 h	Not failed
Membrane	MEA 2	> 2000 h	Not failed
	MEA 3	1648	Electrical short

FT-IR Analysis of **PSI** Membranes after 2416 h of dynamic operation

Less than 10% loss in ionic functionality

No brittleness, cracks, material loss, pinholes or thinning observed.

Improved Membrane Performance (30 cm² single cell)

Maximize proton flux from anode to cathode

Minimize ohmic resistance / losses :

- Membrane-Electrode interfacial resistance
- · Membrane surface resistance
- · Membrane bulk resistance

BL: DuPont Nafion® NR212 (Commercial Benchmark)

- Standard Gen2 Membrane A :
- В: Improved Membrane-Electrode interface (Optimized MEA bonding conditions)
- Improved membrane surface (Reduced process related loss of surface functionality) C :
- D : Improved base substrate (Increased flexibility of backbone)
- Improved membrane bulk (Reduced restrictions in chain mobility and water content) E :
- F : Reduced membrane thickness (25 -> 12 um)