

swiss scientific initiative in health / security / environment systems

ISYPEM RTD 2010 FNSNF

Benchmarking therapeutic drug monitoring software: ^{Corre hospitaler} A systematic evaluation of available computer tools

Aline Fuchs (1), Chantal Csajka (1) (2), Yann Thoma (3), Thierry Buclin (1), Nicolas Widmer (1)

(1) Division of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (2) Section of Pharmaceutical he Sciences, University of Geneva and Lausanne, (3) Reconfigurable and Embedded Digital Systems Institute, School of Business and Engineering Vaud, University of Applied Sciences Western Switzerland, Yverdon-les-Bains

heig-vd Haute Ecole d'Ingénierie et de Gestig

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

Background

• Therapeutic drug monitoring (TDM) aims at predicting treatment success, failure or toxicity, and to adjust prescription in consequence¹.

What can observe ?

Objective

1. To asses and compare computer tools developed to assist clinicians in the routine individual TDM-

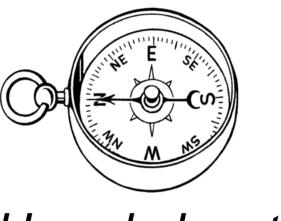
• Treatment is optimized by individualizing dosage regimen based on the measurement of blood concentrations.

• To maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represent a gold standard TDM approach, but requires computing assistance².

 In the last decades computer programs have been developed to assist clinicians in this assignment³.

•The development of miniaturized drug measurement methods will require embarked software to assist clinicians in dosage individualization

Pharmacokinetics



Where do I stand ?

1 2 01

Where should I go ?

TDIM For R for R For R Free Inetics Inetics Inetics Inetics Inetics Inetics

Dosage adjustment

How do I go there?

guided dosage adjustment.

2. To identify suitable specifications for the development of a novel tool designated for microplatforms.

Method

- Literature and Internet were searched to identify software
- Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage

• A weighting factor was applied to each criterion of the grid for its relative importance

 To assess the robustness of the software, six representative clinical vignettes were processed through each of them

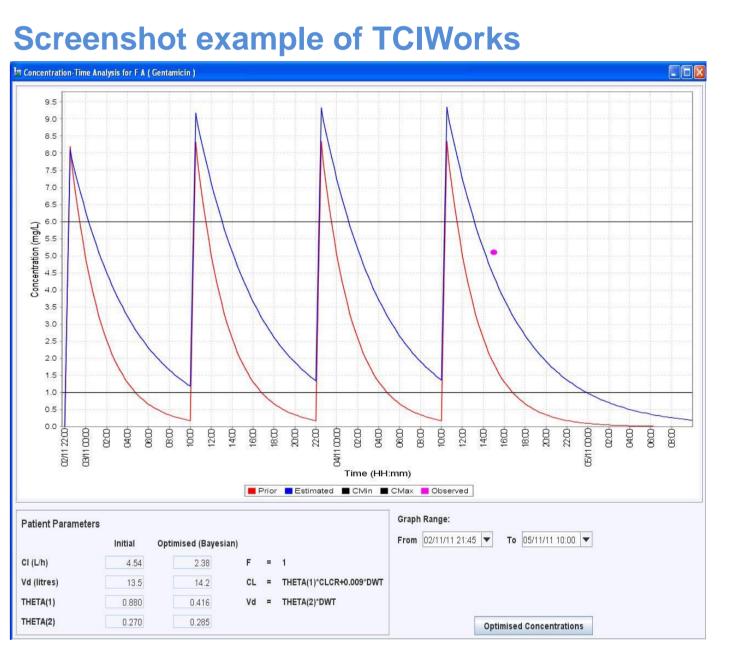
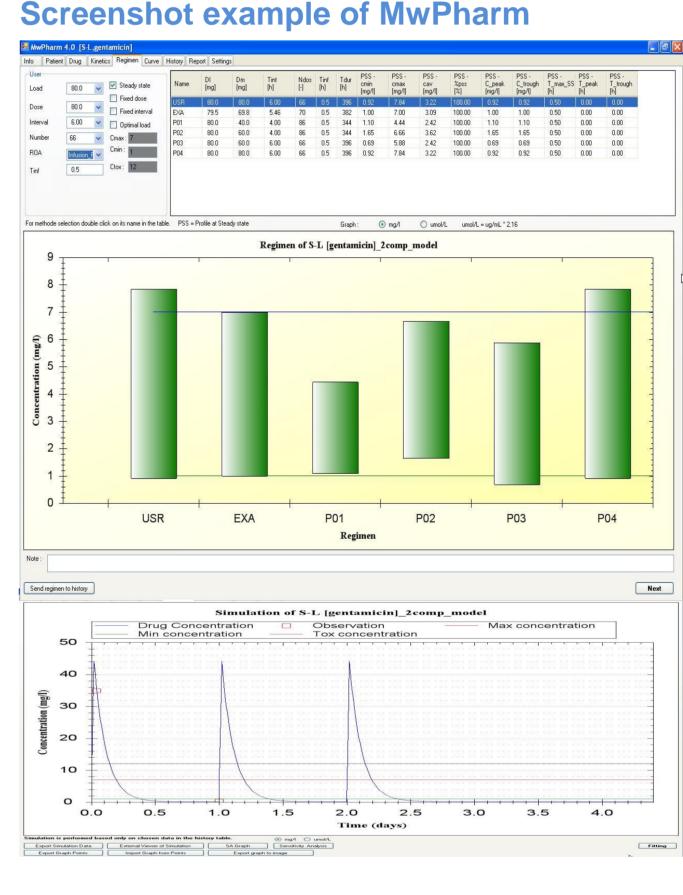



Table I : Category's and overall category's ranking (the top three programs in blue)

	WW	٩.	Z	5		An Ki	A	Y	Kin	FU	Ki	X
General characteristics												
User interface	10	4	7	6	11	3	1	2	5	9	8	12
Interfacing	5	1	5	5	5	2	2	2	5	5	5	5
Storage	7	2	8	10	10	10	3	1	5	6	4	9
Report	10	1	7	8	12	9	2	2	6	5	4	10
Cost	4	8	3	6	6	5	1	1	12	8	10	11
Computational aspects	10	3	1	2	11	6	6	6	9	5	4	12
Total	10	3	4	9	11	8	1	2	6	7	5	12
Pharmacokinetic aspects												
Population and drug	7	1	6	2	11	9	3	8	5	4	10	12
Models	1	3	2	9	10	8	7	6	4	5	11	12
Modularity	7	8	1	1	11	4	4	4	3	9	11	10
Plot	1	3	2	10	11	6	6	6	3	3	6	11
Various	10	3	1	5	12	7	7	9	6	4	2	11
Total	3	2	1	8	11	9	6	7	4	5	10	12
Authors												
Expertise of authors	1	3	2	9	9	6	6	6	12	5	4	9
GLOBAL SCORE	6	1	2	9	11	8	3	4	7	5	10	12

Screenshot example of APK

APK©								
File View Tools Help								
Exit Report Consult Monitor	Ling Mistory Grap	l Help						
Active patient list	Patien	data	Retrospective dosing					
Select drug Gentamicin	• e	<u>B</u> etrieve	Select analysis method					
	inutes after infusio before infusion	n	Steady-state peak/trough 💌					
Enter serum level data								
Dose 500 mg Infused o	iver 30 👻 minu	tes every 24	hours for 3 doses					
Trough 0.27 mcg/ml dra	awn 1 minu	tes BEFORE infi	usion					
Peak 34.9 mcg/ml dra	awn 30 minu	tes AFTER infus						
2nd level mcg/ml dra	awn HOL	IRS after infusion	n end 🧷 Clear all					
Ideal dose and PK parameters		nter recommend	led dose					
Ideal dose= 355 mg Q 19 hours		400	mg Q 24 hours					
Kel=0.212 1/hr Half-life=3.3 hr			the second se					
Vd=12.3 L (0.25 L/kg)		30' peak = 27.9 mcg/ml +/- 2.8 Trough = 0.2 mcg/ml +/- 0.0						
CpMax= 38.8 mcg/ml CpMin= 0	1.3 mcg/ml	nougn=	0.2 mcg/mi 4/-0.0					
20.10.2011 Fuchs		Unregistered	evaluation copy					

Results & Perspective

- 12 software tools were identified, tested and ranked, representing a comprehensive review of available software.
- MwPharm (1250 € per license) and TCIWorks (free) were best ranked tools but represent sophisticated programs.
- Numbers of drugs handled by the software vary widely (from 2 to 180).
- 8 programs offer the possibility to add new drug models based on population pharmacokinetic data.

• Bayesian computation to predict dosage adaptation based on a blood concentration (*a posteriori* adjustment) is performed by 10 tools, while 9 are also able to propose *a priori* dosage regimens, only based on individual patient covariates such as age, gender, and weight. They mostly converge to similar predictions (when possible to process).

Computer-assisted therapeutic monitoring gains growing interest and should further improve, especially in terms
of user-friendliness, institutional information system interfacing, data storage capacity and report
generation.

• This review will support the rational elaboration of a modern TDM software in the context of the ISyPeM project⁴.

Contact

Aline Fuchs

Division de Pharmacologie Clinique Centre Hospitalier Universitaire Vaudois (CHUV) 1011 Lausanne, SWITZERLAND e-mail: <u>aline.fuchs@chuv.ch</u>

References

[1] Buclin T et al. Br J Clin Pharmacol 2012
[2] Platt DR et al. Clin Lab Med 1987
[3] Buffington DE et al. Clin pharmacokineti 1993
[4] Noverraz B et al. Poster Nano-Tera 2012