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 Age, gender, weight, height, etc.
e Clinical Features

e Diabetes, heart disease, cancer, etc.
e Genomic features

e Family disease history.
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Table 1 Sample Comparisons of Drug Concentration Predictions [1], [2]
. Users predefine the therapeutic ranges of Gastrointestinal stromal tumors. (Drug: Imatinib)
Sample 1 1681.00 = 245580 = 1842.12  1756.52 | +90.25% = +11.05% peak and/or trough concentration values of Patient Features Recommendations
a certain drug. :
: : Body Weight .
Sample 2 1901.00 | 1383.10 = 1803.03  1843.07 | +88.81%  +7.73% * |n this patient example, we choose dosage : (Kg) Disease
to be 600mg and the time interval to be 12h ) y 29 e c
Sample 3 1116.00 = 1639.20  1517.42 = 1257.18 | +73.02% = +49.74% after dosing. (Drug: Imatinib)
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