

SVM-based Drug Administration Decision Support System (DADSS)

Wenqi You¹, Alena Simalatsar¹, Nicolas Widmer², Giovanni De Micheli¹

¹Integrated Systems Laboratory, EPFL, ²University Hospital Center and University of Lausanne

RANdom Sample Consensus (RANSAC)

- Used to separate efficiently inliers and outliers from data samples (remove noise);
- Estimate parameters for a potential model using basis functions:

Prediction Accuracy Using DADSS

Table 1 Sample Comparisons of Drug Concentration Predictions [1], [2] nd DADSS mothods (Drug: Imptinih)

and DADSS methods. (Drug: <i>Imatinib</i>)											
	Drug Concentration Prediction [mg/L]	Measured	[1]	[2]	DADSS	%[1]	%[2]				
	Sample 1	1681.00	2455.80	1842.12	1756.52	+90.25%	+11.05%				
	Sample 2	1901.00	1383.10	1803.03	1843.07	+88.81%	+7.73%				
	Sample 3	1116.00	1639.20	1517.42	1257.18	+73.02%	+49.74%				
	Sample 4	2107.00	3296.60	2619.34	2069.70	+96.86%	+39.93%				
	Sample 5	1399.00	1732.80	3178.94	1364.16	+92.56%	+525.79%				
Prediction Differences	Δ MEAN	-	667.86	590.56	69.35	+89.62%	+78.04%				
	Δ STD	-	331.16	686.22	43.43	+86.89%	+194.10%				
		$\begin{aligned} & \textbf{Prediction Enhancement} \\ & \{\frac{DADSS - [1]}{[1]}, \frac{(DADSS - [2])}{[1]}\} \times \ 100\% \end{aligned}$									

Implementation New

Library **Patient Preprocessing**

(Data completion,

filtering, normalization) Core (SVM-based Drug

Concentration Prediction)

Selection (Drug's Dosage and Time Interval)

Support Vector Machines (SVM) Input Space **Feature Space** Easy to understand;

- Able to process a large number of features;
- Deal properly with overfitting problem.

- Age, gender, weight, height, etc. Clinical Features Diabetes, heart disease, cancer, etc. Genomic features · Family disease history.
- **Physical Measurements** Vascular Features Blood sugar, cholesterol level, pH value, etc. **Physical Features**
- Blood pressure, heart rate, renal function, respiration frequency, respiration rhythm, respiration deepness, etc. **External Parameters**
- Symptom Features Vomiting, fever, dizziness, headache, convulsion, somnolence, shock, etc.
- Habitual Features Amount of water, milk, smoke, alcohol, tea, coffee, sports, type of food, etc. **Environmental Features**
- Humidity, temperature, etc.

Features

DADSS Recommendation Rules

- Users predefine the therapeutic ranges of peak and/or trough concentration values of a certain drug.
- In this patient example, we choose dosage to be 600mg and the time interval to be 12h after dosing. (Drug: Imatinib)

Table 2 Sample Recommendations From DADSS. M: Male, F: Female, G: Gastrointestinal stromal tumors. (Drug: Imatinib)

		Recommendations				
No.	Gender	Age	Body Weight (Kg)	Disease	Dosage (mg)	Time (h)
1	M	82	56	G	400	13
2	F	58	53	G	500	15
3	F	62	54	G	700	16
4	M	58	100	G	800	18
5	М	47	73	G	500	14

Given more features, DADSS can provide more personalized recommendations to patients and clinicians.

Publications:

- W. You, N. Widmer, and G. De Micheli, "Example-based Support Vector Machine for Drug Concentration Analysis", 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), pp. 153-157.
- W. You, N. Widmer, and G. De Micheli, "Personalized Modeling for Drug Concentration Prediction Using Support Vector Machine", 4th International Conference on Biomedical Engineering and Informatics (BMEI 2011), pp.1523-1527. **Under Review:**
- W. You, A. Simalatsar, N. Widmer and G. De Micheli, "SVM-based Drug Administration Decision Support System", 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012).
- W. You, A. Simalatsar, and G. De Micheli, "RANSAC-based Enhancement in Drug Concentration Predictions Using Support Vector Machine", International Workshop on Innovative Simulation for Healthcare (I-WISH 2012).

Future Work

- Evaluate the system performance using more data samples.
- Implement the system into mobile devices, e.g. iPhone and test the system on various drugs.
- Integration of the SVM-approach into a closed loop verification process of an autonomous drug delivery system.

- References:
- [1] D.W.A. Bourne, "Mathematical Modeling of Pharmacokinetic Data", 2nd ed. Technomic Publishing Company, Inc, 1995. [2] W. You, N. Widmer, and G. De Micheli, "Example-based Support Vector Machine for Drug Concentration Analysis", 33rd Annual International Conference of the IEEE Engineering
- in Medicine and Biology Society (EMBC 2011), pp. 153-157.
- [3] M. Fischler and R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", Communications of the
- ACM, vol. 24, no. 6, pp. 381-395, 1981. [4] S.R. Gunn, "Support Vector Machines for Classification and Regression", Technical Report, University of Southampton.