

A Ge-on-Si Single-Photon Avalanche Diode Optimized for Infrared Wavelengths

Mahdi Aminian¹, Amir Sammak², Lis Nanver², Edoardo Charbon^{1,2}

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

¹Ecole Polytechnique Fédérale de Lausanne, ²Delft University of Technology

- Main goal
 - Create a Germanium SPAD array
 - Near-infrared detection range (~1.2-1.6µm)
- Why Ge-on-Si
 - Ge bandgap of 0.67eV
 - Suitable for near-infrared applications
- What has been done
 - Simulations of various Ge structures
 - Testing of other Ge photodetectors in Geiger mode

Ge-on-Si SPAD Process Flow

Ge-on-Si epitaxial growth

- Selective Ge epitaxy on Si (1µm-thick)
- Very low density of threading dislocations
- Can be tens-of-microns large

PureGaB deposition

- Depletion region above defect area
- Ga deposition to form the ultra shallow p⁺-doping (~5 nm)
- B deposition to avoid AI spiking and further oxidation

Cross-sectional TEM images of selective Ge epitaxy grown on patterned Si followed by in-situ growth of a GaAs layer

Ge-on-Si APD Experimental Results

Specifications of Ge APDs

Si

- Can be operated both in proportional and in Geiger mode
- Low dark counts and reasonably high sensitivity at room temperature
- Low values of reverse current, series resistance and ideality factor

Toward A Ge-on-Si SPAD Array

Nano-Tera annual meeting, Marriott Hotel, Zürich, 26th-27th April, 2012