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Introduction

In a wide variety of applications one wants to find the maxima of a scalar
function over a region of interest. We use a discrete time Markov Chain Monte
Carlo (MCMC) method to identify the positions of the maxima. The
application of this randomized search algorithm is demonstrated on two
different problems: an underwater exploration scenario and a surveillance
scenario. In the latter we obtain a stochastic patrolling strategy that monitors
an area while taking high-value targets into account.

Search Algorithm

Goal: Identify the locations of the maxima of a scalar concentration function
C : X → [0, 1] on a compact domain X ⊂ R2.

I Search performed by N agents, each with simplified discrete-time dynamics:(
xk+1

θk+1

)
=

(
xk + v(θk)T

uk

)
=

xk + v̄

(
cos(θk)
sin(θk)

)
T

uk

, (1)

with position x ∈ X , heading angle θ ∈ [0, 2π], constant speed v̄,
sampling period T and control input u.

I Markovian controller, generating a discrete-time Markov chain {sk}k≥0 for

each agent, where sk :=
(
xk, θk

)
∈ S := X × [0, 2π].

I The MCMC method to compute the input uk is outlined in Algorithm 1.

Algorithm 1 MCMC Search Algorithm

Require: Initial state s0 =
(
x0, θ0

)
1: set k = 0
2: loop
3: update xk+1 = xk + v(θk)T
4: generate proposal angle θ̃k+1

5: calculate the acceptance
probability α(sk)

6: update θk+1 = uk, where

uk =

{
θ̃k+1 w. p. α(sk)
θk w. p. 1− α(sk)

7: set k = k + 1
8: end loop

In essence:
I A new heading angle is proposed

each step from a distribution q.
I If it is accepted, the agents turns, i.e.

changes direction in the next step.
I If rejected, the agent keeps going in

its previous direction.
I The positions are determined

through the dynamics.
I Main design choice are distribution q

to generate the proposals and
acceptance criterion α.

I Choices for q and α only need to
adhere the criteria below.

Design criteria:

I Proposals drawn from q must not lead the agent outside X in the next step.
I α is monotonically increasing in C, increasing the probability of a turn in

high-concentration areas. Hence the agents spend more time in these regions.
I α depends continuously on s (technical condition).
I α = 1 near the boundary of X . Forces the agents to turn, before leaving X .

Result: Agents will randomly explore the space X . The distribution of the
observed agents’ positions over the mission time approximates the function C.
I.e. the peaks of the distribution coincide with the location of the maxima.

Application 1: Autonomous Underwater Vehicle (AUV)

Underwater exploration scenario to identify the source locations of
substances, e.g., fresh water or chemical pollution, with the help of AUVs.

I Case study on circular X with radius
R = 400m and field

C(x) =
3∑
i=1

wie
−m‖x−xs,i‖.

I Choice of a sigmoidal function as acceptance
criterion:

α(sk) = 1− e−(kC(xk)
J)λ(sk), (2)

with tuned parameter k = 100 and
J = 0.1. λ is a designed border function,
ensuring that α = 1 close to the border.

Figure 1: Parameters:

xs,1 = (−80, 50), w1 = 0.3,

xs,2 = (0,−100), w2 = 0.7,

xs,3 = (140, 120), w3 = 0.9

and m = 0.1.

Figures 2 and 3 depict the discretized spatial distributions of the AUVs for dif-
ferent number of agents and different mission times.

Figure 2: 5 AUVs for 5 hours
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Figure 3: 1000 AUVs for 5000 hours

Details and the numerical convergence analysis of the Markov chain for this case
study are presented in [1].

Application 2: Camera Surveillance

Surveillance scenario for patrolling an area G ⊂ R2 with N cameras.
Extend benefit of stochastic patrolling strategies [2] by qualitative
constraints, i.e, higher observation probability of important objects.

Specification phase:

I Desired observation probability of
locations g ∈ G given as covering
function π(g).

I Aim: Achieve π as best as possible.
I To apply the MCMC search, a function
Cn is needed for each camera.

I Synthesis of Cn on the local pan-tilt
spaces Xn by solving the LP (3),

min
ξn,c

‖cπ(g)−
N∑
n=1

B>n ξn‖∞

s.t. (ξn)j ≥ 0 (3)∑
j

(ξn)j = 1

∀n ∈ {1, · · · , N}

with distributions of camera positions ξn, matrices B>n mapping pan-tilt
configurations on Xn to observed areas on G and scaling factor c.

I Obtain Cn(x) =
∑NX

l=1wlN (x|µl,Σ) s.t. Cn(X) = ξ∗n,
(sum of weighted Gaussians), with grid points X ∈ Xn.

Patrolling phase:

I Case study with 2 cameras and desired π depicted in Figure 4.
I The acceptance criterion was chosen similar to (2) with different tuning.
I Simulated distributions of camera positions (Figures 8 and 9) approximate

the designed Cn (Figures 5 and 6). Figure 7 shows resulting covering π̂.

Figure 4: Desired

covering π
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Figure 5: C1 of

camera 1

Figure 6: C2 of

camera 2

Figure 7: Achieved

covering π̂ (ideal)

Simulation

from Xn
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Figure 8: Simulated

positions camera 1

Figure 9: Simulated

positions camera 2
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