

swiss scientific initiative in health / security / environment systems

NetCam SSSTC

Randomized exploration in environmental and surveillance applications

S. M. Huck¹, N. Kariotoglou¹, S. Summers¹, D. M. Raimondo² and J. Lygeros¹

¹Automatic Control Laboratory, ETH-Zurich, Switzerland, ²Dipartimento di Informatica e Sistemistica, University of Pavia, Italy

Introduction

In a wide variety of applications one wants to find the maxima of a scalar function over a region of interest. We use a discrete time Markov Chain Monte Carlo (MCMC) method to identify the positions of the maxima. The application of this randomized search algorithm is demonstrated on two different problems: an underwater exploration scenario and a surveillance scenario. In the latter we obtain a stochastic patrolling strategy that monitors an area while taking high-value targets into account.

Figures 2 and 3 depict the discretized spatial distributions of the AUVs for different number of agents and different mission times.

Search Algorithm

Goal: Identify the locations of the maxima of a scalar concentration function $C:\mathcal{X}
ightarrow [0,1]$ on a compact domain $\mathcal{X}\subset \mathbb{R}^2$.

 \blacktriangleright Search performed by N agents, each with simplified discrete-time dynamics:

$$egin{pmatrix} x_{k+1} \ heta_{k+1} \end{pmatrix} = egin{pmatrix} x_k + v(heta_k)T \ u_k \end{pmatrix} = egin{pmatrix} x_k + ar v igg(\cos(heta_k) \ \sin(heta_k) igg) T \ u_k \end{pmatrix}, \quad (1)$$

with position $x \in \mathcal{X}$, heading angle $\theta \in [0, 2\pi]$, constant speed \bar{v} , sampling period T and control input u.

- Markovian controller, generating a discrete-time Markov chain $\{s_k\}_{k\geq 0}$ for each agent, where $s_k := (x_k, \theta_k) \in \mathcal{S} \coloneqq \mathcal{X} imes [0, 2\pi]$.
- \blacktriangleright The MCMC method to compute the input u_k is outlined in Algorithm 1.

Algorithm 1 MCMC Search Algorithm

Require: Initial state $s_0 = (x_0, \theta_0)$ 1: set k=0

In essence:

- ► A new heading angle is proposed each step from a distribution q.
- ▶ If it is accepted, the agents *turns*, i.e.

changes direction in the next step.

► If rejected, the agent keeps going in

 \blacktriangleright Main design choice are distribution q

to generate the proposals and

 \blacktriangleright Choices for q and α only need to

its previous direction.

through the dynamics.

acceptance criterion α .

adhere the criteria below.

► The positions are determined

Figure 2: 5 AUVs for 5 hours

Figure 3: 1000 AUVs for 5000 hours

Details and the numerical convergence analysis of the Markov chain for this case study are presented in [1].

Application 2: Camera Surveillance

Surveillance scenario for patrolling an area $\mathcal{G} \subset \mathbb{R}^2$ with N cameras. Extend benefit of stochastic patrolling strategies [2] by qualitative constraints, i.e, higher observation probability of important objects.

Specification phase:

- Desired observation probability of locations $g \in \mathcal{G}$ given as *covering* function $\pi(g)$.
- ► Aim: Achieve π as best as possible.
- ► To apply the MCMC search, a function C_n is needed for each camera.
- Synthesis of C_n on the local pan-tilt $orall n \in \{1, \cdots, N\}$ spaces \mathcal{X}_n by solving the LP (3),

 $\min_{\xi_n,c} \ \|c\pi(g)-\sum_{n=1}^{-1}B_n^{ op}\xi_n\|_\infty$ s.t. $(\pmb{\xi}_n)_j \geq 0$ (3) $\sum_{j} (oldsymbol{\xi}_n)_j = 1$

2: **loop**

- 3: update $x_{k+1} = x_k + v(heta_k)T$
- 4: generate proposal angle $heta_{k+1}$
- 5: calculate the acceptance probability $\alpha(s_k)$
- 6: update $heta_{k+1} = u_k$, where

$$u_k = egin{cases} ilde{ heta}_{k+1} & ext{w. p. } oldsymbol{lpha}(s_k) \ heta_k & ext{w. p. } oldsymbol{1} - oldsymbol{lpha}(s_k) \end{cases}$$

- 7: set k = k + 1
- 8: end loop

Design criteria:

- \blacktriangleright Proposals drawn from q must not lead the agent outside \mathcal{X} in the next step.
- $\triangleright \alpha$ is monotonically increasing in C, increasing the probability of a *turn* in high-concentration areas. Hence the agents spend more time in these regions. $\triangleright \alpha$ depends continuously on s (technical condition).
- $\triangleright \alpha = 1$ near the boundary of \mathcal{X} . Forces the agents to turn, before leaving \mathcal{X} .

Result: Agents will randomly explore the space \mathcal{X} . The distribution of the observed agents' positions over the mission time approximates the function C. I.e. the peaks of the distribution coincide with the location of the maxima.

Application 1: Autonomous Underwater Vehicle (AUV)

with distributions of camera positions ξ_n , matrices $B_n^ op$ mapping pan-tilt configurations on \mathcal{X}_n to observed areas on \mathcal{G} and scaling factor c.

► Obtain $C_n(x) = \sum_{l=1}^{N_X} w_l \mathcal{N}(x|\mu_l, \Sigma)$ s.t. $C_n(X) = \xi_n^*,$ (sum of weighted Gaussians), with grid points $X \in \mathcal{X}_n$.

Patrolling phase:

- \triangleright Case study with 2 cameras and desired π depicted in Figure 4.
- ► The acceptance criterion was chosen similar to (2) with different tuning.
- Simulated distributions of camera positions (Figures 8 and 9) approximate the designed C_n (Figures 5 and 6). Figure 7 shows resulting covering $\hat{\pi}$.

Underwater exploration scenario to identify the source locations of substances, e.g., fresh water or chemical pollution, with the help of AUVs.

 \blacktriangleright Case study on circular \mathcal{X} with radius R = 400m and field

 $C(x)=\sum_{i=1}w_ie^{-m\|x-x_{s,i}\|}.$

Choice of a sigmoidal function as acceptance criterion:

> $lpha(s_k) = 1 - e^{-(kC(x_k)^J)} \lambda(s_k),$ (2)

with tuned parameter k=100 and J = 0.1. λ is a designed *border* function, ensuring that $\alpha = 1$ close to the border.

Figure 1: Parameters: $x_{s,1}=(-80,50)$, $w_1=0.3$, $x_{s,2}=(0,-100)$, $w_2=0.7$, $x_{s,3}=(140,120)$, $w_3=0.9$ and m = 0.1.

-400 -400 -300 -200 -100 0 100 200 300

Acknowledgement

This research was partially supported by the NanoTera-SSSCT Grant under the project NetCam and the European Commission under the project Feednetback FP7-ICT-223866.

References

[1] S. M. Huck and P. Hokayem and D. Chatterjee and J. Lygeros: *Stochastic localization of* sources using autonomous underwater vehicles. ACC 2012.

[2] D. M. Raimondo and N. Kariotoglou and S. Summers and J. Lygeros: *Probabilistic* certification of pan-tilt-zoom camera surveillance systems. CDC 2010.