

swiss scientific initiative in health / security / environment systems

Towards miniature carbon-nanotube based X-ray sources

S. Giudice ^A, R. Jose James ^A, G. Spinola Durante ^A, Christian Bosshard ^A

C. Muller^A, P. Niedermann^A, A. Dommann^A, Ch. Kottler^A, R. Kaufmann^A

H.-R. Elsener^B, R. Longtin^B, J. R. Sanchez-Valencia^B, P. Groening^B

Materials Science & Technology

Miniature X-ray source concept

CNTs as field electron emitters

AuSn Transient Liquid Phase Bonding

Key requirement for bonding technology

CNT Characteristics:

 Small diameter and high aspect ratio Large electrical field enhancement factor and low threshold voltage \rightarrow Miniaturization of X-ray source \rightarrow Pulsed operation of X-ray source

Mock-up of an CNT based miniaturised X-ray source

- Hermetic packaging under **10**⁻⁵ **mbar** for functioning of CNTs
 - \rightarrow Integration of getter material needed
 - \rightarrow Getter activation : 15-30min at 350-450°C in a sealed cavity

Bonding of CNT wafer and extraction grid based on AuSn TLP process

Au-Sn intermetallic compound formation leading to isothermal solidification at the bonding temperature

Solder fabrication and bonding

• Au/Sn multilayer electroplating on thin-film UBM

• Au-rich intermetallic achieved in the whole joint

• 4h annealed samples

High bonding pressure Continuous bonding line

CNT dies integration and vacuum measurements

PECVD growth

- CNTs grown by Plasma Enhanced Chemical Vapour Deposition (PECVD) on Ni nanodots (70 nm diameter)
- E-beam lithography of Ni nanodots arrays on TiN intermediate layer
- High growth temperature of 750°C

CNT paste technology

- Screen printing of a carbon nanotube-clay composite paste on molybdenum substrates
- Annealing in vacuum at 880 °C

Electron emission of deposited CNTs

• Repeatable and stable electron emission over a long time

CNT outgassing experiment

- Harsh deposition conditions of CNTs could affect the outgassing/vacuum level
- CNT dies integrated into ceramic packages and sealed with AuSn eutectic preforms under vacuum (2mbar)
- µ-resonators used to measure the vacuum level

(up to several hours) at constant high voltage supply

Vacuum results

- Q-factors in the range 13'400-13'600 (correspond to ~2mbar)
- No change observed after bonding (15 days)
- No visible difference between packages with CNT dies or without
- No influence of the CNTs on outgassing detected for this vacuum level