

swiss scientific initiative in health / security / environment systems

OpenSense

Route Selection of Mobile Sensors for Air Quality Monitoring

Olga Saukh, David Hasenfratz, Abouzar Noori, Tamara Ulrich, and Lothar Thiele Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland {saukh, hasenfratz, ulrich, thiele}@tik.ee.ethz.ch, anoori@student.ethz.ch

OpenSense: Sensing the Air We Breathe

- Air pollution is a major concern in urban areas
- Currently measured by monitoring networks managed by official authorities
- Analytical instruments accurately measure wide ranges of air pollutants
- Cost, size, and laborious maintenance severely limits number of stations

GOAL: Improve the resolution of current air pollution maps in cities with lightweight OpenSense sensors

Mobile OpenSense Nodes to Optimize Coverage

- OpenSense nodes are installed on top of several public transport vehicles
- Zurich public transport (VBZ) operates 14 tram and 54 bus lines
- Over 15 vehicles are operating on each of the 68 lines during the day

Ozone concentration levels (source: data.opensense.ethz.ch)

Ozone concentration levels (source: BAFU / NABEL data)

PROBLEM: Which routes to pick for installation of OpenSense sensors?

Reference Stations

Precise pollution recordings

• NABEL (National Air Pollution Monitoring Network): 1 station in Zurich: O₃, CO, NO₂, SO₂, PM10, NMVOC • OstLuft (Cantonal Air Pollution Monitoring Network): 4 stations in Zurich: O₃, NO, NO₂

OstLuft stations in Balsberg and Winterthur

OpenSense Nodes

OpenSense Node: O₃-Sensor, CO-Sensor, Accelerometer, GSM, WLAN, GPS

Checkpointing Constraints

Two vehicles make a checkpoint if the distance between them is below a certain threshold. Checkpoints are used for

- Relating measurements in space and time
- Comparing sensor readings and sensor calibration
- Recognizing faulty sensors

Ref. station

X-Checkpoint - between two OpenSense nodes **R-Checkpoint** - between an OpenSense node and a reference station

Route Selection Algorithm

Route selection problem involves high computational complexity even for a small number of OpenSense nodes

City	Network	Routes	Vehicles	Stops
Zurich	tram	13	260	187
Canton Zurich	bus	283	732	2′543
Berlin	bus	149	1′300	2′634
Chicago	bus	152	2′000	12′000

Algorithm parameters:

- Number of measurement stations
- Locations of the reference stations
- X-checkpointing or R-checkpointing constraints
- Maximum execution time

Given the checkpoints between all pairs of sensors, it is possible to construct a checkpoint graph. If a checkpoint graph is connected, the set of selected vehicles fulfills checkpointing constraints.

NY City 5'908 15′226 324 bus Long Island 389 48 bus n/a

Statistics on public transport networks in different cities

SOLUTION: Evolutionary algorithm

Fitness: inverse to coverage of the city center

OpenSense Website: http://opensense.epfl.ch, OpenSense Zurich Deployment: http://www.opensense.ethz.ch