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Abstract – Sensing biomedical signals i e electrical potentials caused by neuralAbstract – Sensing biomedical signals, i.e., electrical potentials caused by neural
activity is a necessity in clinical diagnostics e g for heart disease detectionactivity, is a necessity in clinical diagnostics, e.g., for heart disease detection.
Miniaturization is a prerequisite for portable devices which can be used for ambulantMiniaturization is a prerequisite for portable devices which can be used for ambulant
long-term monitoring Besides the diagnostic purpose small-sized and low-powerlong-term monitoring. Besides the diagnostic purpose, small-sized and low-power
devices for biomedical data acquisition are interesting for brain-machine interfacesdevices for biomedical data acquisition are interesting for brain machine interfaces,
such as prosthesis controlsuch as prosthesis control.

l t dA multi-channel sensor front-end ASIC for electroencephalography (EEG) electrodeA multi channel sensor front end ASIC for electroencephalography (EEG),
channel 1...100 µV

electromyography (EMG) and electrocardiography (ECG) data acquisition is
channel µ

electromyography (EMG) and electrocardiography (ECG) data acquisition is V100 µ
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Typical biomedical signals as they are recorded for ECG simultaneously While a separate analog front end was
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EMG, and EEG are a superposition of a low-amplitude implemented for each channel. The analog-to-digital electrode, p p p
small signal and an up to three orders of magnitude higher
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converter (ADC) is shared among the channels Prior to Fi 1 S f EEG i l t i ll h ll i lsmall signal and an up to three orders of magnitude higher

ff t (Fi 1) Si l i i d d diffi lt
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Fig. 1: Surface EEG signals typically have a small signal

offset (Fig. 1). Signal processing is rendered more difficult amplification, the signal offset is compensated with a (> 0.5 Hz) amplitude of 100 µVpp while they are
by a slight drift of this offset over time due to variations of current-steering digital-to-analog (DAC) converter to
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superimposed to a time variant offset of up toby a slight drift of this offset over time due to variations of

the skin to electrode resistance The frequency band of
current steering digital to analog (DAC) converter to
prevent the instrumentation amplifier (IA) from saturation

superimposed to a time variant offset of up to
300 mVthe skin-to-electrode resistance. The frequency band of
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prevent the instrumentation amplifier (IA) from saturation.
Thi DAC i l d b ff hi di i l i i i h

300 mV.

interest for most biomedical applications is between 0.5 This DAC is regulated by off-chip digital circuitry, since thepp
and 3 kHz and therefore sensitive to flicker-noise Signal

g y p g y
offset is not constant A second DAC compensates the IAand 3 kHz and therefore sensitive to flicker noise. Signal

amplitude and bandwidth are dependent on the
offset is not constant . A second DAC compensates the IA
offsetamplitude and bandwidth are dependent on the offset.

application: Typical ECG (EMG/ EEG) signals have an Chopping [1,2] is used to suppress the flicker-noise addedpp yp ( ) g
amplitude of up to 5 mV (1 mV/ 100 µV) and frequencies

pp g [ , ] pp
by the IA (Fig 2 6) To avoid aliasing the modulatedamplitude of up to 5 mV (1 mV/ 100 µV) and frequencies

b t 0 5 d 100 H (3 kH / 100 H )
by the IA (Fig. 2, 6). To avoid aliasing, the modulated

ff t d fli k i i d d ith ti lbetween 0.5 and 100 Hz (3 kHz/ 100 Hz). offset and flicker-noise is damped with an active low-pass
filter (LPF) with a corner frequency of 3 2 kHz which limits

Circuit
filter (LPF) with a corner frequency of 3.2 kHz which limits
the (analog) bandwidth The gain of the front end isCircuit the (analog) bandwidth. The gain of the front-end is

An overview on the implemented circuit is shown in Fig. 3. adjustable between 128x and 2048x to address differentp g
The integrated circuit (IC) allows to digitize eight channels

j
signal amplitudesThe integrated circuit (IC) allows to digitize eight channels signal amplitudes.
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Fi 3 Di f th i l t d i it ith d t il dFig 2 The principal idea of chopping is to mod late the lo freq enc flicker noise added b the instr mentation Fig. 3: Diagram of the implemented circuit with a detailedFig. 2: The principal idea of chopping is to modulate the low-frequency flicker-noise added by the instrumentation
lifi (IA) f b d f (f l ) A fi h d l h i i l f d i illustration of one channel’s analog front-end:amplifier (IA) to an out-of-band frequency: (f.l.t.r.) A first chopper modulates the input signal to fchopper and its g

Chopping is used to suppress flicker noise while
pp

odd harmonics. This signal is fed into the instrumentation amplifier, which typically adds offset, flicker and C opp g s used to supp ess c e o se e
compensation DACs are necessary to remove the

g p , yp y ,
thermal noise to the amplified signal. In this figure an amplification by 1 (0 dB) is chosen for simplicity. A compensation DACs are necessary to remove the

rather large (near) DC part of the signal prior to
thermal noise to the amplified signal. In this figure an amplification by 1 (0 dB) is chosen for simplicity. A
second chopper modulates the amplifier’s output While the amplified input signal is demodulated the added rather large (near) DC part of the signal prior to

lifi ti
second chopper modulates the amplifier s output. While the amplified input signal is demodulated, the added
noise is modulated to the chopping frequency and its odd harmonics Finally the signal is low pass filtered amplification.noise is modulated to the chopping frequency and its odd harmonics. Finally the signal is low-pass filtered.
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Fig 4: Photomicrograph of the test-signal of 100 µVpp at 11 Hz. The noise waswas measured to be roughly 82 nV/√Hz. depicted in Fig. 7.
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