

swiss scientific initiative in health / security / environment systems

Power Management and Communication for Remotely Powered Sensor Nodes

Mehrdad Azizi, and Catherine Dehollain

Radio Frequency Integrated Circuit Group (RFIC), Ecole Polytechnique Fédérale de Lausanne (EPFL)

Introduction

This research focuses on development of wirelessly powered integrated circuits (ICs). The circuits should be able to wirelessly communicate with the base station and read the data from various sensors or control different actuators.

The Main Challenges:

• Implementing the internal circuits of the sensor node with low power consumption.

• Increasing the efficiency of wireless power transmission.

Example Applications

Blood Pressure Monitoring System

P. Cong et al., "A Wireless and Battery less 10-Bit Implantable Blood Pressure Sensing Microsystem With Adaptive RF Powering for Real-Time Laboratory Mice Monitoring," IEEE Journal of Solid State Circuits, Dec. 2009.

Cochlear Implants

Cardiac Pacemaker

"A 5.2 mW Self-Configured Wearable Body Sensor

Intraocular Pressure &

Controller and a 12 μ W Wirelessly Powered Sensor for a

Continuous Health Monitoring System," IEEE Journal of Solid-State

ECG Monitoring System

Adhesive

Bandage-type

Sensors

S Lee et al "A Programmable Implantable Micro-Stimulator Y C Shih T Shen and B P Otis "A 23 ut

Network Control

Circuits, Jan 2010.

Chest band

Standards transmitters are sutiable for high data rates and require power hungry blocks like frequency synthesizers and power amplifiers.

Performance of the Fabricated Transmitter:

External Inductor as Transmitter Antenna

Oscillator PerformanceTechnology0.18 umExternal Inductor27 nHFrequency700 – 802 MHz (5 Bit)Supply Voltage1 VSupply Current65 – 176 uA (4 Bit)

Demonstration of the Concept

Low data rate of biomedical signals and short communication range make it possible to use low precision transmitter by directly modulating the free running oscillator.

cochlagramaricas com	SoC with Wireless Telemetry: Application in Closed-Loop	wireless Intraocular pressure/temperature
cochiedrumencus.com	Endocardial Stimulation for Cardiac Pacemaker," in ISSCC	monitor," IEEE Journal of Solid State Circuits, vol.
	Digest of Technical Papers, Feb. 2011, pp 44-45.	46, no. 11, pp. 2592-2601, Nov. 2011.

Remote Powering

Main Blocks for Wireless Power Transfer:

Functions of Different Blocks: PA is converting the DC power from the battery to AC power for coupling.

L1 & L2 are coupling energy from base station to remotely powered side.

Rectifier is converting coupled AC voltage to DC voltage.

Regulator is stabilizing the voltage for

Performance of Different Blocks:

A A A A A A A A A A A A A A A A A A A	
0 0 0	

Data Transmitter		
Operation Frequency	868 MHz	
Power Consumption	840 uW	
Data Rate	12 Kbps	

	Data Receiv	er
	Operation Frequency	868 MHz
	Data Rate	12 Kbps
	Sensitivity	-85 dBm
	Power Consumption	152 mW

Data Link Operation Distance

ance 40 cm

System Setup:

Rectifier & Clock generation		
Rectified Voltage	4 V	
Regulated Voltage	3 & 1.8 V	
Clock Frequency	192 KHz	

SKIN

 $\textbf{Total Link Efficiency: } \eta_{T} = \eta_{PA} \times \eta_{Coupling} \times \eta_{Re\,ctifier} \times \eta_{Re\,gulator}$

Performance of the Fabricated Rectifier:

processing blocks. Wireless Voltage Regulation can be used to compensate the variation of the coupling between the inductors.

Power Link Operation Distance 1.5 cm

Link Efficiency: PA+ Coupling+Rectifier 4.3 %

Rectifier Performance		
Technology	0.18 um	
Frequency	13.56 MHz	
Output Power	300 uW	
Output Voltage	1.65 V	
Peak Input Voltage	2.1 V	
PCE (Simulated)	85 %	

Expected Contributions

This research aims to improve the already existing platforms with:

Intelligent usage of the harvested power by modifying the system level design.
Extending the system operation to multiple implants.