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Securing the System
The current system has a few possible loopholes which could be used to alter the system, read out information and

manipulate the information which is sent through it. A modified FPGA configuration bit stream, or firmware, could be

applied to the board. I.e., such a modified firmware could constantly disable the encryption such that all the payload is

transmitted in plaintext. A second scenario could be that one of the hardware platforms is being replaced by a fake one. A

third scenario could be the eavesdropping of the secret key link.

To secure the system, we need to have a subsystem on the board that helps preventing manipulation of the FPGA

configuration bit stream, authenticates all the involved hardware and stops operation if unknown hardware is connected,

and authenticates and encrypts the secret key, which is transferred between the QKD and the enCryptor.

We decided to build such a subsystem by using so called physically unclonable functions (PUF).

Physically unclonable functions are devices which exploit physical variations of integrated circuits (IC) to generate a

unique, device specific output pattern. The physical variations are introduced in the manufacturing process and tend to

be highly random. Therefore, even with complete manufacturing instructions, the behavior of the PUF can never be

duplicated – it is unclonable.

DRAM PUF

PUFs proposed so far:

• Race conditions: delay differences in “equal” pairs of signal 

paths

• Ring oscillators: frequency variations

• Static RAM (SRAM): power-up pattern

• Optical: light propagation in passivation layer to on-chip photo 

diodes

Our proposal:

Patent filed:

“Generating Unique Numbers Using Charge Decay Phenomena”

(the patent covers several other charge-decay based effects

suitable for PUFs)

Dynamic RAM PUF (DRAM PUF) 

unclonable inputs outputs random

Race conditions yes some few (yes)

Ring oscillators yes some few (yes)

Optical yes some few (yes)

SRAM yes none many no

DRAM yes many many yes

Using DRAM as a PUF circuit has some advantages over the

other implementations. The most significant one is the large input

space. An arbitrary input pattern can be written to the memory

array and a corresponding output pattern can be gathered which

is, ideally, statistically independent of the input pattern.

DRAM PUF Operation Data Processing

The PUF operation conducts the 

following tasks:

• write pattern = PUF input (raw)

• state is stored on capacitors

• refresh is disabled

• leakage (de)charges capacitors

physical variations

• read word(s) = PUF output (raw)

• sense amplifiers discriminate 0|1

physical variations
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Initialization: find wait time

repeat

• write pattern 

• wait t(k++)

• read pattern

until 25% cells toggled

PUF readout: evaluate function

• (input pre-processing)

• write pattern 

• wait t25%

• read word(s)

• (output post-processing)
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When retrieving the node charge, timing is an important factor. The

reliability of the output pattern of the PUF directly depends on that

timing. If the storage nodes are read out too early, almost no

changes have occurred. If we wait too long, the charges have

vanished and no information can be extracted. Therefore, the

optimal time window has to be found after every startup and even

during normal operation.

Timing is not the only property which needs to be controlled and

adapted to the current operating conditions. Pre- and post-

processing of the input data pattern and the output data pattern

may be applied.

It is possible, that certain input pattern are not suitable for the PUF

as their output is not statistically independent of the input. This

could be countered with a pre-processing unit (f). One possibility is

the usage of a specifically adapted hash function to prevent the

input pattern from being too regular.

The output pattern will most certainly vary over time when applying

the same input pattern. This can be caused by the leakage varying

over time, temperature, or radiation. In this case, the output can be

seen as a noisy signal. It has been proposed to use forward error

correction to generate a static output.

When input C is applied to the DRAM PUF for the first time, the

corresponding output R is read out. In the distillation unit (g), a

code word E is calculated for this output R.

If the same input C is applied at a later time, a noisy output R* is

extracted. With E, the original R can be restored.

Further more, the random part of R* can be extracted and be used

as true-random numbers.

Key Exchange Secured with PUF Device 

From the PUF, a private key and an encryption key is

extracted.

This private key is used to calculate a public key.

Using a Trusted Third Party, the respective public keys are

exchanged.

A new pairing can only be done through the same TTP.

Using the own private key and the public key of the other

device, a symmetric key is calculated. (Diffie-Hellman)

This key is then used to encrypt the data to be transmitted

between QKD and Crypt.

The authentication of the other device is done implicitly. If

i.e. the PUF device on the Crypt board is replaced, it

cannot decrypt the transmitted Quantum Key since it does

not have the public key of CHIP A.

If the system is physically attacked,

the structures of the IC are altered.

The PUF will therefore output an

altered pattern and the original

private key and encryption key is

irretrievably destroyed.
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Pairing through TTP:
• PUFs >> private keys

• PUFs >> encryption keys

• TTP: exchange public keys

• PUFs: encrypt public keys
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connection:
• Derive symmetric keys

• Transmit encrypted Qkey

Further Applications
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To protect the FPGA from loading an altered

configuration, the configuration is encrypted

at the manufacturer with a device specific

key. This key is retrieved during first setup

at the manufacturer.

When the configuration is loaded, it is

decrypted and applied to the FPGA. In case

of a manipulated configuration file, the

decryption will produce a random bit stream

and the FPGA will not be working.


