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 Shown in dimensionless vector form, the Navier-Stokes equations 
analytically represents the fluid flow, where u,p and T represent the velocity, 
pressure and temperature fields respectively; ρ, µ, k and cp stand for the 
density, the viscosity, thermal diffusity and the specific heat of the phase Φ, 
Re, Fr and We are dimensionless parameters to characterize the flow 
regime; t is the time and g is the gravity. On the heat transport equation, q 
stands for the heat flux and H is the Heaviside function. 
 

 The finite element method is a powerful and flexible way to discretize 
the numerical domain and to represent the fluid dynamics with accuracy. By 
applying the ALE technique to two-phase flows, we are able to take 
advantage of the  best aspects of both reference frames namely Lagrangian 
and Eulerian. The curvature calculation approach leads to faster accurate 
results, compared to classical distance function calculations. This showed 
that the methodology proposed to simulate two-phase flows with phase 
change provides good accuracy to describe the interfacial forces and 
bubble dynamics.   

The goal of the present study is to:  

§  Develop a 3D Arbitrary Lagrangian-Eulerian Finite Element code; 
§  Develop a platform for modeling two-phase flows; 
§  Predict flows in microscale geometries; 
§  Couple heat transfer and two-phase flow. 

 The study of microscale two-phase flows is important in many 
areas of engineering. Since a full description of flow behavior in some 
situations is hard to predict experimentally, a numerical approach is often  
necessary to study particular cases. This work is part of the larger multi-
disciplinary multi-laboratory CMOSAIC project which aims to study and 
design interlayer cooling system for the next generation of 3D stacked 
microprocessors, illustrated by: 

 Illustrated by the figure below, the Lagrangian approach differs from 
the standard approach by the addiction of points on the surface between 
the fluids. In fact, no artificial smoothing is required to deal with high 
properties ratio (Φ1/Φ2). This methodology leads to a sharp 
representation of interface and accurate results. 

 

Channel shapes: 
Rectangular, 
circular, square, 
trapezoidal. 

Channel sizes:  50µm to 
200µm. 
Fluids: water, 
nanofluids, refrigerants 

 Due to insertion of points on the surface, it is mandatory to treat the 
mesh properly to preserve the aspect ratio of elements. Flipping 
operation is done where two elements don’t present good shape, thus 
the edge is swapped as shown in [1]. Insertion of points are performed 
where the edge become larger then a referential edge length [2]. 
Deletion of point occurs where the concentration of elements is 
saturated [3]. All the illustrated operations tends to keep the mesh in a 
reasonable quality ensuring accuracy and precision of calculation. 

 

Figure (6) presents the velocity 
profile (u,v and w) due to boiling 
of refrigerant R134a. The 3D 
vapor bubble is immersed in the 
superheated liquid with no  
external forces such as gravity. 
This test is important to evaluate 
the implemented mass transfer 
occurr ing in the interface 
between the phases. As can be 
seen from the left to right, the 
vapor bubble increases its 
volume. 

Figure (4) shows the time progression of a Taylor air bubble immersed in a 
sucrose solution. In the transient evolution, the bubble’s velocity reached 
its maximum velocity at time t≈1, and its terminal velocity at time t≈3.7 
Also, it was shown that the bottom part of the bubble was pulled in and 
oscillated until convergence at t≈7.4. Figure (4) presents the transient 
solution of the bubble’s center of mass velocity. The result agreed to the 
prediction of the flow pattern map, obtaining an error of 1.1%  
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