

swiss sciencife influence influence for a second systems

: CSem

Materials with optimized properties for H₂ storage

<u>Olha Sereda¹, Antonia Neels¹, Alex Dommann¹, Fabiane Oliveira², Yves Leterrier², Jan-Anders Månson²</u>

1-CSEM SA, Jacquet Droz 1, CH-2002 Neuchâtel

2-Laboratoire de Technologie des Composites et Polymères, EPFL, CH-1015 Lausanne

FNSNF

Introduction

Our main affords are focused on the principle of the use of solar energy (collected on home roofs), which can be used to electrolyze water in order to produce H_2 and O_2 . The idea is to compress these gases and stored locally, filled in car reservoirs and transposed to electricity for fuel cell driven cars. Safety related to hydrogen storage in a car or at home is a key topic.

Ferroelectric polymers, such as polyvinylidene fluoride (*PVDF*) and poly[(vinylidenefluoride-co-trifluoroethylene] [P(VDF-TrFE)], are very attractive for many applications because they exhibit good piezoelectric and pyroelectric responses and low acoustic impedance, which matches water and human skin.

In-situ High Temperature XRD

In situ XRD observations of the PVDF-TrFE sample has been done up to 130°C. At this temperature sample was kept during 2 hours. Analysis of the obtained diffractogram shows coexistence of the paraelectric (alfa) and ferroelectric (beta) phases. Ferroelectric phase changes to Paraelectric phase aready at about 70°C 25'0001 Cooled back to 25°C 20'000 32 30 28 26 24 22 20 215'000 8 10'0001

Polymer/organoclay nanocomposites

5% clay 15A

d₀₀₁ = 3.2nm

SAXS technique reveals the information which CAN NOT be obtained by Wide Angle X-ray Diffraction. For the small wt% (0.5 and 1%) of the clay in PVDF-TrFE, the exfoliation of the clay is taking place

d₀₀₁ = 15nm

10000

1000

sity,

completely (the disappearance of the d_{001} peak). 5-times increase in the *d*-spacing from 3 to 15 nm!

Conclusions

X-ray diffraction methods establish the structure/property relationship for the piezoelectric PVDF and its copolymer (PVDF-TrFE) as material being extremely dense and as a pressure sensor. The films structure and *in-situ* High Temperature X-ray diffraction studies have provided a direct confirmation of the co-existence of the paraelectric (α) and ferroelectric (β) phases. SAXS results confirms the approximately full exfoliation of the organoclay Cloisite 15A in PVDF-TrFE matrix, which is in favour of strong clay-polymer interactions.

