

Towards Ge X-Ray detector monolithically integrated on Si CMOS chip

T. Kreiliger^B, A.G. Taboada^B, C.V. Falub^B, T. Bandi^A, A. Dommann^A, R. Kaufmann^A, S. Mouaziz, A. Neels^A, P. Niedermann^A, A. Pezous^A, Y. Zha^A, F. Isa^C, S. Cecchi^C, J. Frigerio^C, D. Chrastina^C, G. Isella^C, L. Miglio^C, B. Batlogg^B, H. von Känel^B

(A) •• CSEM

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Combine advantages of 2 materials

Challenges of planar Ge on Si growth

Lattice mismatch (4.2%): High dislocation density

Thermal mismatch (130%): wafer bowing & layer cracks

Solution: Grow space filling arrays of 3D Ge crystals

Self limiting lateral growth by "low-energy PECVD": No fusion!

High growth rate (4 nm/s) at low temperature (< 600°C)

Top facet distribution is tunable with temperature

Upper part of Ge is dislocation- & strain-free

Pixel block diagram

Reverse dark current below 1 mA/cm² despite large surface/volume ratio

Reference: C. V. Falub et al., Science **335**, 1330 (2012)

Acknowledgments: CSEM Microsystem Technology cleanroom staff; EMEZ electron microscopy ETH Zurich; FIRST center, ETH Zurich; ESRF Grenoble, ID01 beamline