

Monitoring the Consequences of Obesity

CSeM

UniversitätsSpita

🧐 EMPA

aspo applied signal processing aroun

M. Lemay¹, O. Deriaz², E. Pruvot³, U. Mäder⁴, L. Scherer⁵, J.-M. Vesin⁶, J. Solà¹, N. Stergiopulos⁷, D. Atienza⁸, M. Wolf⁹, J.-P. Thiran¹⁰

¹CSEM, Neuchâtel; ²IRR-SUVA, Sion; ³CHUV, Lausanne; ⁴SFISM-BASPO, Magglingen; ⁵ EMPA, St. Gallen; ⁶ EPFL-ASPG, Lausanne; ⁷ EPFL-LTHC, Lausanne; ⁸ EPFL-ESL, Lausanne; ⁹ USZ, Zürich; ¹⁰ EPFL-LTS5, Lausanne

- Summary -

The goal of the ObeSense project is to combine innovative and non-invasive sensors into single monitoring systems dedicated to the management of obese patients. The proposed advanced multi-parametric diagnostic tools are adapted for clinical as well as ambulatory environments in order to improve patient life quality and reduce important health costs related to late prognostics.

SCENARIO 1 - Lifestyle intervention					
Measurements	Proposed techniques	Added values versus SOTA	Sensors location		
Respiratory rate and volume	Pressure sensors (plastic optical fibers)	- Comfortable over long periods - Low-cost	うじ		
Body motion	3D accelerometers	- Non-occlusive long-term monitoring			
Analysis		Added values versus SOTA	(())		
Body metabolism		 Provides accurate and embedded energy expenditure estimates (MET) Innovative approach for body metabolism studies (ex.: anaerobic threshold detection) 	 3D accelerometers (body motion) Optic fibers (respiratory volume and rate) 		

Measurements	Proposed techniques	Added values versus SOTA	Sensors location	
Clinical ECG	10 textile electrodes	- Allergy-free - Reduce motion artifacts - Washable		
	Designed embedded system	 Long-term monitoring (ultra-low-power consumption, local on-board processing, wireless communications) 		
	3D accelerometers	- Produce ECG quality index		
Blood pressure	Central pulse wave velocity approach	- Non-invasive and non-occlusive continuous monitoring		
	Analysis	Added values versus SOTA	 10 dry electrodes (standard 12- lead electrocardiogram) 	
Н	eart rate and rhythm	- Automatic arrhythmia detector	O 3D accelerometers (body motion)	
Cardiovascular autonomic neuropathy		- Non-invasive detection based on ECG signals	 Pulse oxymeter (photoplethysmogram) Microphone (phonocardiogram) 	
Blood pressure variability		- Accurate continuous blood pressure estimates	 2 dry electrodes (Impedance- cardiogram, 1 also used for ECG) 	

SCENARIO 3 - Ambulatory monitoring						
Measurements	Proposed techniques	Added values versus SOTA	Sensors location			
Ambulatory ECG	6 textile electrodes	- Allergy-free - Reduce motion artifacts - Washable				
	Designed embedded system	 Long-term monitoring (ultra-low-power consumption, local on- board processing, wireless communications) 				
	3D accelerometers	- Produce ECG quality index				
Cardiac output	Electrical impedance tomography	- Non-invasive continuous monitoring				
	Pulse contour	- Non-invasive low-cost continuous monitoring				
Respiratory rate and volume	Pressure sensors (plastic optimal fibers)	- Comfortable over long periods	O 3D accelerometers (body motion)			
		- Low-cost	Optic fibers (respiratory volume and rate)			
Enorgy ovpondituro	Oxygen consumption (pulse oximeter and	- Non-invasive continuous monitoring	 Pulse oxymeter (photoplethysmogram) Near infrared spectroscopy sensors 			

Energy expenditure	NIR spectroscopy)	- Equals the gold standard method	 32 dry electrodes (Impedance- cardiogram used for EIT)
Analysis		Added values versus SOTA	
Heart rate and rhythm		 Automatic arrhythmia detector Automatic detection of ischemic and congestive heart failure events Correlation between dyspnea and low cardiac output, arrhythmias or ischemic events 	
BOOV metabolism		- Provide accurate energy expenditure estimate (Fick-based) and provide innovative approach for body metabolism studies	

- Technological novelties -

"Smart" wireless body area network platforms with ultra-low power consumption, wearable and washable clinical ECG systems, innovative embedded detectors of cardiac arrhythmias, blood pressure monitoring integrated in a smart-textile t-shirt, pioneering non-invasive cardiac output monitoring, long-term energy expenditure estimates via Fick-based approaches or low-cost accurate optical fibers and subsequent.