

swiss scientific initiative in health / security / environment systems

PlaCITUS RTD 2010

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FNSNF

P. Schönle, L. Bettini, S. Fateh, F. Schulthess, T. Burger, Q. Huang

Integrated Systems Laboratory – ETH Zurich

Abstract – We present an 8-channel biomedical data acquisition ASIC achieving 108dB of dynamic range (DR). Each channel includes a 13bit DAC to compensate differential input offset of up to ±300mV, preventing saturation of the high-gain instrumentation amplifier. Chopper stabilization and DAC-noise low-pass filtering lead to an input-referred noise of 0.8μV_{RMS}. Data processing algorithms, implemented on an FPGA, are employed to remove artifacts due to sudden DAC-switching and to cancel 50/60Hz mains interference including its harmonics. The chip is fabricated in 130nm CMOS, occupying an active area of 2.2mm² and consuming 15mW from 1.2V and 3.3V supplies.

1. System Overview

System breakdown

□ Data Acquisition ASIC

- ECG/EEG signals acquisition
- Electrode impedance meas.
- Temperature sensor
- □ Xilinx Spartan 6 FPGA
 - Controlling
 - Signal processing
 Bluetooth connectivity to a Smartphone

2. Data Acquisition ASIC

Main features

□ 130nm CMOS

2.19mm² area

8 electrode channels

2 aux. channels

□ 1.2V & 3.3V supply

□ 15mW max. power

Fig. 2: Chip micrograph.

4. Digital Data Processing

Bluetooth Module

Fig. 1: System block diagram (top) and prototype (bottom).

3. Analogue Front-End

- Chopper-stabilized IA [3]
- □ 3.2kHz low-pass filter
- ±300mV electrodes offset compensation DAC
- □ 8-channels MUX
- B 82dB SNR (13.3 ENOB) ΣΔ ADC
- □ 8kS/s max. sampling rate

Fig. 3: Current balancing instrumentation amplifier (IA).

□ Mains interference cancellation by subtraction of a noise replica

Power line harmonics removal

Optional highpass filtering

Reconfigurable decimation

Fig. 4: Measured spectrum of an ECG signal before (black) and after signal processing (orange).

6. Performance Summary

3.2kHz	Sample Rate:	8kS/s
±300mV	Max. DR ^a :	107.6dB
42mV	Max. SFDR ^b :	66dB
101.0dB	Inp. Impedance:	235ΜΩ
82nV/√Hz	RMS IR Noise ^c :	0.82µV
	3.2kHz ±300mV 42mV 101.0dB 82nV/√Hz	3.2kHzSample Rate:±300mVMax. DRª:42mVMax. SFDR⁵:101.0dBInp. Impedance:82nV/√HzRMS IR Noise⁵:

5. Measurement Results

 \Box Low IR noise of 0.82 μ V_{RMS}

107dB max. DR due to compensation DAC

Moderate impact of DAC on noise performance

High CMRR (101dB) and input impedance (235MΩ)

Fig. 5: Measured output spectrum of an electrode channel for an applied $100\mu V_{pp}$ sinusoidal test signal with compensation DAC enabled (orange) and disabled (black).

References:

[1] R. Yazicioglu et al., "A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems," *JSSCC*, vol.43, no.12, pp.3025-3038, Dec. 2008.
[2] H. Kyong, N. Verma, "A 1.2–0.55V general-purpose biomedical processor with configurable machine-learning accelerators for high-order, patient-adaptive monitoring," *Proc. ESSCIRC*, Sept. 2012, pp.285,288.

[3] Q. Huang, C. Menolfi, "A 200 nV offset 6.5 nV/ \sqrt{Hz} noise PSD 5.6 kHz chopper instrumentation amplifier in 1µm digital CMOS," *ISSCC*, pp.362-363, Feb. 2001.