

UltrasoundToGo **RTD 2013** FNSNE

swiss scientific initiative in health / security / environment systems

UltrasoundToGo:

Portable Ultrasound Imaging Platform

Federico Angiolini¹, Simon Bliudze³, Jean-Philippe Thiran², Joseph Sifakis³, Giovanni De Micheli¹

1 - Laboratoire des Systèmes Intégrés (LSI), EPFL, 2 - Laboratoire de Traitement des Signaux 5 (LTS5), EPFL, 3 - Rigorous System Design Laboratory (RiSD), EPFL

Ultrasound Imaging

Most common medical imaging technique worldwide (as opposed to CT, MRI, etc.)

• Lowest cost, least infrastructure

The UltrasoundToGo Project

• Joint research project between EPFL and ETHZ, with CHUV hospital involvement • Encompasses hardware design, software engineering, and algorithmic investigation

- Also known as: sonography, Doppler, elastometry, etc.
- Used in: emergency medicine, cardiology, gynecology, neurology, ophthalmology, urology, ...
- Requires trained sonologists and lab-scale equipment

Ultrasound Imaging Basics

- Aims at the development of a forward-looking ultrasound imaging platform
 - Mobility-oriented, recognizing that battery-powered applications in emergency medicine, rural areas and third-world countries represent potentially breakthrough advancements in therapeutic options
 - Targeted to the highest image quality, to provide optimal diagnostic capabilities and expand the application fields
 - Easy to use, ideally allowing for adoption by general practitioners rather than requiring a highlytrained sonologist even for basic procedures
 - Based on a robust software engineering approach, leveraging extensive modeling (including thermal) and parallel system simulation to synthesize formally-verifiable executable code

Project Pillar 1 – An Efficient Parallel Computing Platform led by LSI laboratory, EPFL

- High-performance , low-power, parallel emerging platforms such as STMicro's STHORM
- Breakthrough computing power in excess of 40 GOPS/W allows for the software implementation of previously hardware-bound logic and makes whole new imaging options available
- Reduces power requirements to levels compatible with battery-powered, mobile targets

Project Pillar 2 – State-of-the-Art Image Processing

led by LTS5 laboratory, EPFL

• Application of the latest imaging processing breakthroughs to the ultrasound imaging domain • Compressed sensing and compressive sampling for both 2D and 3D ultrasound images allows for

- Echoes are collected and amplified
- Processing logic does "reception beamforming" to reconstruct image line by line
- Many emissions per image, many images per second
- Requires high front-end bandwidth (many GB/s of raw samples) and expensive computation

An Evolving Landscape

• New planar (as opposed to linear) probe geometries allow for 3D imaging • Miniaturization of imaging devices

• Lower power consumption since the number of samples needed to reconstruct an image is reduced, • and/or better image quality since the effective frame rate can be increased

Project Pillar 3 – Formally-Verifiable Software Synthesis led by RiSD laboratory, EPFL

- A methodology and supporting tools for the design of correct-by-construction applications
- A whole design flow based on a series of semantics-preserving transformations, that lead to executable code from a high-level application model in a Domain Specific Language (DSL) tailored for the project

Project Roadmap

2013 2014 2015 2016

1

2013 Nano-Tera Annual Plenary Meeting

http://lsi.epfl.ch, http://lts5www.epfl.ch, http://risd.epfl.ch

EPFL- May 30th, 2013