

How Was Your Journey? Uncovering Routing Dynamics in **Deployed Sensor Networks with Multi-hop Network Tomography**

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zuric

Matthias Keller, Jan Beutel, and Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich

Deployed Multi-Hop Sensor Networks

- Battery-powered sensor nodes require low-power operation
- Low-power radio with small communication bandwidth
- Communication is limited to the wireless channel

puter Engineering and Network Laborat

• System health monitoring using end-to-end metrics

Root Causes of an Observed Performance

cannot be identified using

- End-to-end metrics, e.g., end-to-end delay
- Testbed experiments in a different environment
- Simulation

Two MSP430-based sensor nodes

How can we analyze the performance of a wireless multi-hop network in detail under these constraints?

Reconstruction of the Path, the Per-Hop Order and the Per-Hop Timing of Individual Packets

Packets of Different Sources Travel Together

The Problem of Path Changes

Full path including timing and ordering can be

reconstructed for >92.6% of all packets

Limit packet analysis to subset of packet stream for which packet correlation is safe

A packet k is **reliable** if it fulfills two properties: From our observations at the sink, we can guarantee that (i) packet k can only have travelled along exactly one path N, and that (ii) the order relation between packet k and any other **reliable packet** *m* is consistent along all packet queues in

	Packets						Proc. Delay		Uncertainty					
	Ν	D	IPI	Н	PC	DY	Received	Reliable	Full path	Correct	P _{0.9}	P _{0.98}	P _{0.9}	P _{0.98}
							СТ	P Noe/LPL						
A)	92	10 h	15 s	4	261	99.0%	217,078	3 99.0%	98.9%	100.0%	17 s	20 s	< 1 s	< 1 s
B)	85	9h	30 s	3	123	98.3%	88,541	98.9%	98.9%	100.0%	32 s	40 s	< 1 s	1 s
\cap	91	9h	120s	4	393	99.2%	54.143	98.4%	98.2%	100.0%	625	75 s	1 s	15

Per-hop packet timing serves as a proxy for the occurrence of failure events at the network layer: • Loss of a network announcement (beacon)

Real-World Deployment Data

Analysis of more than 140 million packets

[1] Matthias Keller, Jan Beutel, Lothar Thiele: How Was Your Journey? Uncovering Routing Dynamics in Deployed Sensor Networks with Multi-hop Network Tomography, p. 15-28, SenSys 2012 [2] Matthias Keller, Jan Beutel, Lothar Thiele: *The Problem Bit*, p. 105-114, DCOSS 2013