

swiss scientific initiative in health / security / environment systems

Electrically Pumped VECSELs and MIXSELs

C. A. Zaugg¹, S. Gronenborn², H. Moench², M. Mangold¹, M. Miller³, U. Weichmann², W. P. Pallmann¹, M. Golling¹, B. W. Tilma¹ and U. Keller¹

Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland ²Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen, Germany ³Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm, Germany

RTD 2012

Ultrafast semiconductor lasers

multi-core clocking

optical interconnects

GHz frequency combs

SESAM-modelocked VECSELs ideally suited for pulse generation in GHz regime

Recent achievements from VECSELs:

Recent achievements from MIXSELs:

Electrically Pumped VECSELs

Why electrical pumping?

- much more compact (no pump!)
- mass producible

MIXSEL2

- inexpensive fabrication
- keep advantages (e.g. beam quality, power scaling, suitable for modelocking)

Recent results:

13.1 mW with 7.3 ps pulses [5]

FNSNF

pottom conta diameter

- 3.3 W in 400 fs pulses [1]
- first f_{CEO} detection from a VECSEL[2]

[1] K. G. Wilcox et. al., Opt. Exp. 21 (2), 1599-1605, 2013. [2] C. A. Zaugg et. al., submitted to 6th EPSQEOD Europhoton Conference, 2014

- high-power femtosecond pulses [3]
- 5 to 100 GHz repetition rate [4]

[3] M. Mangold et. al., Opt. Exp. vol. 21 (21), 24904-24911, 2013 [4] M. Mangold et. al., Opt. Exp. vol. 22 (5), 6099-6107, 2014

Electron Microscopy ETH Zurich

[5] W. P. Pallmann, C. A. Zaugg, M. Mangold, I. Dahhan, M. Golling, B. W. Tilma, B. Witzigmann, U. Keller, "Ultrafast electrically pumped VECSELs" IEEE Photonics Journal, vol. 5, Nr. 4, 1501207, 2013

VECSEL gain chip, SESAM and cavity setup

refractive index profile, normalized electrical field distribution and doping profile of the initial EP VECSEL gain structure with TEM insets [5]

*3

Experimental results:

0

Summary of new results

	P _{avg} [mW]	f _{rep} [GHz]	<i>T</i> _{pulse} [ps]	P _{peak} [W]
*3	53.2	9.2	2.91	1.74
*2	10.1	18.2	9.48	0.05
*1	15.9	2.2	2.46	2.62
	35.0	2.2	3.03	4.73

Record performance from modelocked EP-VECSEL:

Highest average power Highest repetition rate Shortest pulses

Highest peak power

nano-tera.ch

RBW 100 kHz

 $\Delta\lambda = 0.4 \text{ nm}$

TBP = 0.360

1.0

FIRST IIIIIII IIIIII

Center for Micro- and Nanoscience

1.1 x Fourier intensity (a.u.) .0 sech² fit (a.u.) limit 0 100 time delay (ps) $\tau_{pulse} = 2.91 \text{ ps/}$ -40 intensity 50 intensity 09f_{rep} 9.23 GHz RBW 30 kHz -20 40 hadred when have been -80 0 MHz 5 MHz 5 MHz 0.0 0.0 980.5 981.0 9 wavelength (nm) 980.0 10 980.5 981.5 40 -10 30 50 $\mathbf{0}$ 10 20 0 frequency (GHz) time delay (ps) *1 average power: >50 mW! our work is supported by:

<u>∆t≈110 ps</u> f_{rep}≈9 GHz

Institute for Quantum Electronics

Ultrafast Laser Physics

1.0

- measured