

Hardware / Software Optimizations for Efficient Embedded Digital Signal Processing in Wireless Body Sensor Nodes

Rubén Braojos, Giovanni Ansaloni, David Atienza

Embedded Systems Laboratory, EPFL

Wireless Body Sensor Nodes (WBSNs) in Healthcare

Multiple inputs

- WBSNs are miniaturized devices able to acquire, process and transmit bio-signals (ECG, EMG, blood pressure movements...)
 - ♠ Wearable, unobtrusive, inexpensive Limited resources and autonomy
- On-board Digital Signal Processing (DSP) is employed to improve energy efficiency.
- Can algorithmic parallelism be exploited?

New Trend: Multi-core WBSN for Efficient DSP

- Workload is divided into subtasks by pipelining phases and performing SIMD execution over several bio-signals
 - → Each subtask is executed in a core
 - → Voltage frequency scaling (VFS)
- Challenges
 - Data-dependent branches (SIMD)
 - Data and control flow among phases
- Lack of efficient mechanism for
 - Re-synchronization to maximize SIMD
 - Producer-consumer notification

Proposed Solution: Lightweigth HW / SW Mechanism for Code Synchronization

Multi-core WBSN (based on [1])

- RISC ultra-low power processors
- Multi-banked IM and DM + shared and private DM
 - → Minimize memory conflicts
- Logarithmic combinational interconnect [3] with arbitration capabilities
- **Broadcasting**: Simultaneous request of the same address are merged into a single memory access
- → Memory energy efficiency

Synchronizer unit:

- Stalls and wakes-up cores to orchestrate execution
- Guaranties re-synchronization

Instruction Set Extension (ISE):

- SLEEP, SINC, SDEC and SNOP Mark synchronization events and
- modify synchronization points

Synchronization points:

- Store run-time information for each synchronization event
- Reserved space in shared memory

Steps to adapt existing biomedical applications

- **Partitioning:** Identify algorithmic phases (producerconsumer) and potential parallel computations (SIMD)
- **Instruction insertion:** Implement re-synchronization and producer-consumer relations with the specific ISE
- **Code mapping:** Cores performing SIMD share the shame IM bank

Benchmarks: Embedded Electrocardiogram (ECG) Applications for WBSNs

Multi-lead ECG filtering (3L-MF) [3]

Remove unwanted artifacts (perspiration, muscular activity,...) from multiple ECG signals

Multi-lead ECG delineation (3L-MMD) [4]

Combines multiple filtered signals and finds onset, peak and end of the main ECG waves

0,6 %

Heart-beat classifier (RP-CLASS) [5]

Performs multi-lead delineation only in the presence of abnormalities

Experimental Results

Run-time

Two considered systems:

- Synchronized multi-core WBSN (MC)
- Equivalent single-core WBSN (SC)

Evaluation Framework

- RTL implementation
- SystemC cycle-accurate simulator
- Custom compilation tool-chain
- Power model derived from post-layout simulations

1,7 %

1,0 %

Conclusions

- Multi-core WBSN are more energy efficient than single-core equivalents if they are properly synchronized
 - → Up to 40% less power consumption (3L-MF)
 - → Very low overhead (< 3%) due to synchronization
- Synchronization + **Broadcasting** = Memory energy efficiency → 40% less accesses to IM and 3.7% less accesses to DM
- SIMD + Workload division \rightarrow Lower clock constraint \rightarrow VFS → 15% Reduction of System V_{DD}

REFERENCES:

[1] Dogan, et al., "Low-power processor architecture exploration for online biomedical signal analysis," IET-CDS 2012. [2] Rahimi, et al. "A fully-synthesizable single-cycle interconnection network for Shared-L1 processor clusters" DATE'11 [3] Y. Sun et al., "ECG signal conditioning by morphological filtering," Computers in Biology and Medicine, 2002. [4] F. Rincon et al., "Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes," Information Tech. in Biomedicine, 2011.

[5] Braojos et al., "A methodology for embedded classification of heartbeats using random projections," in DATE'13