Incentives for Data Gathering in Community Sensing

71: Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Contribution: Privacy aware, Truthful and Adaptive mechanism SEQTGREEDY for recruiting participants in Community sensing application.

Estimate Spatial phenomenon

- Community owned devices
- Low-cost sensors
- Dense sensing network

Community Sensing

Mobile Millenium: Traffic monitoring Berkeley, California

Community Seismic Network (CSN) Earthquake monitoring Pasadena, California

Open Sense: Air Quality monitoring Lausanne/Zurich, Switzerland

Privacy and Incentives

Privacy Concerns

- Sharing of private attributes, e.g. location
- Inference of location from GPS traces
- General anxieties

Use monetary incentives to compensate for information shared

Sensing Phenomena

Environment

• Set of discrete locations V, e.g. zip codes

User's sensing location . Location of the user w is given by $y_w : v \in V$

Sensing Utility

Utility acquired

• Sensing locations $A \subseteq V$: f(A)

Submodular Set functions

- Notion of diminishing return
- Captures many complex utilities: Krause and Guestrin'07
 - E.g. reduction of predictive uncertainty in a probabilistic model
- Near-opt polynomial-time solutions: Nemhauser'78, Feige'98

Privacy through Obfuscation

Obfuscation

- Users share obfuscated location
- Reduce the risk of identifiability

- Sweeney'02, Dwork'06

User's privacy profile

- . Model user's location as random variable Y_{n}
- Exact user location y_w revealed after recruitment and payment . y_w sampled from user's shared distribution $P(Y_w=v)$

Adaptive Selection of Participants

Non-Adaptive

Select without observations

Adaptive Sequential selection policies

Strategic Users and Truthfulness

Bidding Model

• True cost: C_{n} , declared bid: b_{n}

Strategic Users

- Aim to maximize profit by bids
- Mechanism can do arbitrarily bad

Truthful Mechanisms

. Dominant strategy for users to declare $b_w=c_w$

Protocol: Mechanism and Users

Privacy profiles and bids from all users

Allocate next participant Makes a payment p_w to the participant

Participant reveals the actual location Sends the sensing data

T (budget B exhausts)

Main Research problem addressed

Mechanisms for recruiting participants in community sensing:

Privacy **Aware**

Truthful Payments Adaptive Selection

With following desirable properties:

- Budget feasibility
- Polynomial time computation

Our Mechanism: SEQTGREEDY

Greedy Selection Rule

Early Stopping

Proportional share criteria $\left(\overline{\left(\sum_{s \in \mathcal{S}} \Delta_s \right)} + \Delta_{w^*} \right)$ Reduced budget

Truthful Payments

- Threshold Payments: Myerson'81
- Expected maximum raise in bid a user can do before being removed
- Payments depend on observations

SEQTGREEDY: Analysis

Main Results

. Achieves a utility at least $\frac{1}{3}\left(1-\frac{1}{e}\right)$ i.e. ~21% compared to that of SEQOPT (non-polynomial with unrealistic access to true costs)

- Under the assumption, users are independent
- And, utility gain from each user is small
- Generalizes results of Singer' 10, Chen' 11 for adaptive submobularity.

Case study of Air Quality Monitoring

Environment

- Zip data for Nevada State (220 zip codes)
- Population statistics to simulate users' locations

Data from Mechanical Turk

- Survey about participation in application
- 75% users responded positively for participation
- Realistic cost distributions
- Mobility data to simulate sensing radius for user

Bids (\$) and Senstivity for sharing location • Senstivity Distribution of Bids for sharing Zip location (\$) Unwilling to share

Results: Varying Budget and Utility

- RANDOM: Naïve Baseline with unrealistic access to true costs
 - SEQGREEDY: Near-optimal with unrealistic access to true costs CONSTTGREEDY: Non-adaptive truthful (Singer'10, Chen'11)

Results: Varying Obfuscation

Utility acquired with increasing obfuscation

- . % Gain from Adaptivity
- % Loss from Truthfulness
- % Loss from Privacy