

swiss scientific initiative in health / security / environment systems

Infrastructure for Crowdsourcing Environmental Monitoring

FNSNF

Julien Eberle, Jean-Paul Calbimonte, Karl Aberer

OpenSense2

EPFL, Switzerland

Server-side Distributed and scalable infrastructure GSN (Global Sensor Networks) [1] - Extensible streaming middleware

queries

Client-side Users' own devices for data collection

Leveraging user's own devices as part of the "infrastructure"

RTD 2013

- Support for semantic annotations
- Online modeling capabilities [2]
 - Queries over models or data streams
- Distributed processing through zeroMQ messaging
- Fast and transparent communication between virtual sensors

Rich sensors environment (internal + external + virtual)

Competing for system resources like CPU, memory, battery, but also user's attention The goal is to minimize the load on the device and the user.

Two approaches :

Adaptively enable sensors Driven by application need and sensor availability Collaborate with other devices

Continuously sense everything Richer dataset, training data Performing data-mining offline

()

Local processing Efficient on-device data processing

OpenSense Deployments

фþ

Meta

And other sources of information

data

"aw

Mobile sensors on roof of trams and buses in Zürich, resp. Lausanne, collecting air quality information and providing meta information: location, sensor type, ...

Official federal references stations (NABEL)

Different interpolation models including land use information. [4]

Expert knowledge and regulatory limit values for setting thresholds and color scales.

To reduce communication, processing and storage load, using the smartness of the sensors or sensing device

The idea: aggregating the data into meaningful symbols and perform the usual processing and machine learning tasks on them. [3] Several levels of symbolic representation can be used (abstraction level)

Constraints:

egate

ata

- Unsupervised learning
- Online processing
- Limited memory use and processing power

Symbols can be mapped to semantic meaning (not always) Level-0: taken from global data distribution

- Using SAX, clustering, quantiles, expert knowledge,...
- Suitable for data-mining
- Level-i: patterns composed of level-(i-1) symbols
 - Using online state recognition
 - Maintain the recent history in a transition matrix

References

[1] GSN, Global Sensor Networks, available on Github : http://gsn.epfl.ch, https://github.com/lsir/gsn

[2] Erol Can Un, Julien Eberle, Yongsung Kim, Karl Aberer. A model-based back-end for air quality data management. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication (pp. 1143-1150), ACM, 2013. [3] Tri Kurniawan Wijaya, Julien Eberle, Karl Aberer. Symbolic representation of smart meter data. In Proceedings of the Joint EDBT/ICDT 2013 Workshops (pp. 242-248), ACM, 2012.

[4] Jason Jingshi Li, Arnaud Jutzeler, Boi Faltings. Estimating Urban Ultrafine Particle Distributions with Gaussian Process Models. In Research@Locate'14, Canberra, Australia, 07-09 April 2014, published at http://ceur-ws.org