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Introduction

Direct conversion of solar energy and water into chemical energy via
photoelectrochemcial (PEC) processes is one viable route for
renewable fuel processing and energy storage. Integrated PEC
devices, i.e. composed of an integrated traditional photovoltaic
component and an electrolyzer component, allow to circumvent some
of the challenges imposed by solid-liquid interfaces in traditional PEC
devices, and can operate at higher efficiencies than externally wired
(non-integrated) PV plus electrolyzer devices '. In order to ensure the
economic competitiveness of integrated devices compared to
traditional PEC devices, concentration of irradiation is considered.
We proposed a novel integrated device design, shown in Fig. 1,
combining EC, PV and concentrator?.
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Fig. 1 3D schematic (not to the scale) of the integrated PEC. 2D simulation domain is the xy-plane.
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Methodology

We developed a coupled 2D multi-physics model of the proposed
concentrated PEC device. The simulation flow is shown in Fig. 2.
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Results

The radiation absorbed by the actuator heats up the cylinders filled
with phase change material and produces a vertical expansion of
around 50um, causing actuation (see Fig. 3).
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Fig. 3 Schematic showing thermal expansion (in
nm) and stress profile (in N/m?) of the phase

change material.
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Fig. 4 Current-voltage characteristics of the integrated PEC device with and without spectrum
separation by dichroic prism layer with an effective optical concentration of 1.
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The cooling power of the water
Is found to be dependent on its I x
mass flow rate and length of the —| —’
water channel. Fig. 5 presents
two cases to analyze the
thermal behavior of the PEC
device.
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Fig. 5 Schematics showing two cases with and
without water inlet boundary condition (BC).

The average temperature (Fig. 6) in case | is much lower than in case
Il signifying the importance of cooling water.
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Fig. 6(a) Temperature profile (in K) of the Fig. 6(b) Temperature profile (in K) of the

integrated PEC device without water inlet
fixed temperature BC (case Il).

integrated PEC device with water inlet fixed
temperature BC (case ).

The PV performance benefited with decreasing temperature (water
acting as coolant, removing the heat from the PV) while the
electrochemical performance benefited from the increasing
temperature (heated water used as reactant). The amount of

\_ Fig. 2 The simulation flow of the integrated PEC device. .
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Conclusion

The model developed shows promise to be a valuable design and
optimization tool for integrated PEC devices working with
concentrated irradiation and at elevated temperatures.
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