

SmartGrid

Cyber-Secure Communication Architecture for Active Power Distribution Networks (ADN)

Teklemariam T. Tesfay, Jean-Pierre Hubaux, Jean-Yves Le Boudec, and Philippe Oechslin Email: {tech.tesfay, jean-pierre.hubaux, jean-yves.leboudec, philippe.oechslin}@epfl.ch

Cyber-physical Infrastructure of an ADN Monitoring and Control Center App Server Power flow Information flow PV and/or wind farm PV and/or wind farm Circuit Breaker (CB) MV/LV Residential Area Distributed Circuit Cir

Security Goals of an Active Distribution Network

An attacker should not have more power than a classical sabotage by physical destruction

Being smart should not translate to a more fragile system

No unchecked trust on individuals and devices

- Treat all individuals and devices as potentially malicious
 - Authenticate and authorize individuals to access devices and services
 - Authenticate all devices for network access
 - · Constantly monitor network and look for suspicious activities

Network Access Control - Keep the bad devices at bay

Two steps to successfully connect a device to the network

- a. Field technician authenticated by central server
- b. Verify device attributes satisfy a set of requirements
- Device issued digital certificate and other parameters after the two steps are accomplished
- Digital certificate for device authentication and for secure session setup (e.g, (D)TLS)

From Passive to Active Distribution Networks

RTD 2013

Conventional power distribution network

Passive, requires minimal centralized control strategy

Active power distribution network

- Highly distributed and more sophisticated monitoring and control strategy
- A large number of sensing and actuating field devices dispersed over a large geographic area in remote locations
- Pervasive communication infrastructure

Security implications of ADN

- A wide range of options to compromise the network
- Attacks from insiders or outsiders

Attacker's goals

 Compromise the availability, authenticity or freshness of sensor data or control signals

Role Based Access Control and Activity Monitoring

Each user has an individual account managed by a central authentication server

- No per-device account
- Role based access control (RBAC) policy specifies privileges for each account
- Prevents unauthorized access by outsiders

Activity and event monitoring for accountability

- User activity and event logs centrally managed in a logging server
- Postmortem analysis of log data to hold insiders accountable for their activity
- Revoke privileges of suspected insiders

Secure device installation and configuration during Islanding

- Disturbance in the main grid can cause an ADN to operate in islanded mode
- Island controller (IC) provides local control and protection functions
- Islanding can render the AAA server unreachable
- Malicious insiders or outsiders can exploit such emergency situation
- Authenticate users using challenge-response mechanism
- Use Island controller (IC) as a security proxy
- IC issues temporary certificate to newly installed devices
- Assumes existence of outof-band communication
 (e.g, 3G) between AAA
 server and the island.

Reference: Teklemariam T. Tesfay, Jean-Pierre Hubaux, Jean-Yves Le Boudec, and Philippe Oechslin "Cyber-Secure Communication Architecture for Active Power Distribution Networks (ADN)", Special Track on Smart Grid and Smart Technologies (SGST), March 24-28, 2014 Gyeongju, Korea

FNSNE