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A theoretical framework for
spinal neuroprostheses

Spinal Cord Stimulation: a promising intervention to
improve motor function after spinal cord injury (SCI) [1].

Open questions: mechanisms underlying site-specific
facilitation of movement are poorly understood.
Consequently, there is limited information available on the
optimal strategy for the design and use of modern interfaces
like Multi-Electrode Arrays.

Apporach: we developed a realistic computational model
of the rat lumbosacral spinal cord, which we comprehensively

validated with electrophysiological and pharmacological
experiments [2] to tackle the problem.

Realistic model Experimental Validation

FEM-NEURON Model EMG measurements

Results and Validation

The Computer Model

A Finite Element model coupled to a realistic model of cells,

sensory and motor fibers.

Spinal cord. Lumbosacral tract of the Rat Spinal cord L2-51
from realistic histology.
Cell/fiber models. Realistic models of group | and Il afferents,
motor axons, alpha motoneurons and interneurons [3].
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Quantitative Validation and hypotheses confutation
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Quantitative Validation.
s performed by comparing
EMG reflex response
recruitments with model
recruitment predictions
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Multipolar Stimulation

Two bipolar configurations

Ipsilateral flexion

Model Predictions Acute Experiments
Left Limb recruitment: 51 midline — 51 left Left Limb recruitment: S1 midline — S1 left
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Multipolar EES
achieves a high
degree of limb and
muscular/segmental
selectivity.
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Hypothesis 1: MR and PR are afferent mediate
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Hypothesis 2: PR is polysanptic.
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Hypothesis 3: Cells are not directly stimulated.
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Voltage Solutions.

The current density spreads in
the high conductive CSF
surrounding the cord.

Cells are not recruited.

Cells are not directly stimulated.
Indirect cell recruitment oc-
-curs by means of afferents

stimulation. : . ' a
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Multisite Stimulation
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Multisite stimulation.  , ¢,
Multisite stimulation sy %,
enables limb selectivity,

however poor segmental

selectivity is showed.

Conclusions

In terms of spatial selectivity a precise
selection of lower and upper lumbar
segments is possible, overcoming the
difficulties found with classic monopolar EES.

These results demonstrate the ability of
multipolar EES to boost the controllability
of spinal sensorimotor circuits during
movement execution.

For the first time, we applied a validated
computational model to predict
near-optimal configuration of the
stimulation to facilitate specific types

of movements with multipolar EES.

These results establish a practical and
mechanistic framework to steer the design
of Multi Electrode Arrays configuration,

and the development of multisite

EES patterns, to facilitate recovery of

motor functions after a range of neurological
disorders.
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