

Upscaling perovskite solar cells

Jun-Ho Yum, Soo-Jin Moon, Laurent Sansonnens, Linus Löfgren, Sylvain Nicolay, Julien Bailat, Christophe Ballif

PV-Center, CSEM, Jaquet Droz 1, 2002 Neuchâtel

Motivation

Upscaling of perovskie solar cell for ultra-high performance tandem photovoltaic energy system

What is the top cell material on Si-bottom cell?

The organometallic halide perovskite

Record efficiency: 17.9% (KRICT, certified by NREL) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

What are the advantages of the organometallic halide perovskite?

- 1. Tunable dimensionality
- Tunable optical and electronic property
- Low-cost process-based solution process
- High molar extinction efficient
- Steep absorption onset and no optically detected deep states

However, all reported high performance have been achieved on laboratory scale area below 0.5 cm².

CSEM task is to upscale perovskite solar cell:

CSEM will focus on optimizing perovskite layer via production-oriented processes such as wet coating, spin-coating or new innovative coating, with the final aim of transferring the high efficiency achieved in the labs to pre-production scale mini-modules

Figure 1. Perovskite structure (Hui Seon Kim et al., J. Phys. Chem. C 2014, 118, 5615)

Figure 2. (Left) Absorption coefficient of CH₃NH₃Pbl₃ perovskite compared to other photovoltaic materials (Stefaan De Wolf et al., J. Phys. Chem. C 2014, 5, 1035) and (Right) absorption spectra of $CH_3NH_3Pb(I_{1-x}Br_x)_3$.

Device fabrication

EQE

Compact TiO₂ layer Glass Perovskite on scaffold Hole transport layer Au

Figure 4. Device structure, SEM of perovskite on TiO₂ scaffold (Julian Burschak et al, Nature 499, 316) and molecular structure of HTL, spiro-OMETAD.

Figure 3. Perovskite solar cell fabrication process.

Result

	Active area	PCE [%]	Voc [mV]	Jsc [mA/cm ²]	FF [%]	Rsc [Ohms.cm ²]	Roc [Ohms.cm ²]
	0.25 cm ^{2[a]}	13.7	1010	20.0	67.7	2.63E+04	9.42
	1 cm ^{2[a]}	12.8	1030	20.4	60.8	2.10E+03	9.88
	4 cm ^{2[b]}	8.15	839	17.4	55.9	2.69E+02	12.5

Figure 5. EQE of the best cell and (insert) IV result

of perovskite solar cells with different active area.

Wavelength (nm)

Further work

[a] FTO from Pikinton, [b] FTO from CTEC

New pin-hole free compact layer development in order to mitigate recombination loss Process engineering for large substrate to achieve uniform layers Minimodule development with the use of laser scribing