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Energy Crisis in Datacenters

 Datacenter operation will require soon more money per year for energy 
costs than for IT equipment replacement

Drastic improvements in datacenter power efficiency needed!
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• Achieving Energy‐Proportionality in Datacenters

• Holistic Approach: HW‐SW and infrastructure 
management

1. SLA Performance Guarantees

2. Multi‐level Software Management

3. Innovative Cooling Infrastructure Design
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Principles of Thermosyphon Cooling Loop

• EVAPORATOR: Heat applied to the evaporator
is the driver of the thermosyphon cooling loop.

• RISER: The generated vapor with a low density
ρv ascends through the riser due to buoyancy.

• CONDENSER: Then, the vapor condenses in the
condenser placed at the top.

• DOWNCOMER: Finally, the single‐phase liquid
with a density ρl higher than ρv flows due to
gravity through the downcomer, closing the
loop at the evaporator.

The density difference between single‐ and two‐phase flow regimes induces a non‐
equilibrium state, in which a denser liquid tends to flow downwards (downcomer), 

compensating the less dense two‐phase upflow in the riser.

Inputs:
• R134a as a working fluid at a saturation temperature of 60 oC (psat = 16.8 bar) and water in a secondary loop,
• R134a inlet–water outlet temperature difference of 15 K (approach temperature at the condenser),
• Cooling capacity of 200 W (~53 W/cm2 ).

Simulation Results
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1

6 4

5 Aluminum, 
2000 μm‐high and 
200 μm‐wide in‐
line channels with 
150 μm‐wide fins,

horizontal

6.08 70.4 19.07 74.9 0.64 68.8

2 10 11.77 136.2 14 77.2 0.28 110.5

3 15 15.66 181.3 11.8 77.7 0.2 135.7

4 20 18.54 214.6 8.9 78.5 0.18 153.2

5

7 5

5 Aluminum, 
2000 μm‐high and 
200 μm‐wide in‐
line channels with 
150 μm‐wide fins,
vertical (flow up)

5.26 60.9 20.48 74.3 0.75 62

6 10 10.48 121.3 14.8 76.5 0.33 101.7

7 15 14.76 170.8 12.4 77.8 0.21 130

8 20 18.36 212.5 7.7 78 0.19 152.1

Simulations show that the passive thermosyphon cooling system is a potential 
technology to cool high heat flux microprocessors.

The heat flux simulated here is higher than ~40 W/cm2, which 
relates to the processor of the SPARC T3-2 ORACLE server.  

Potential Blade/Cabinet Architecture/Cooling 
and Heat Recovery Systems 

• Double-thermosyphon on-chip 

cooling implementation is 

anticipated.

• Dielectric refrigerant (R134a or 

new environmentally-friendly 

working fluids) with water 

flowing in a secondary loop will 

be considered.

• Heat recovered can be reused. 

• IT services are becoming indispensable for proper
operation of our modern digital world

1. To access information

2. To process large‐scale data sets

 Datacenters represent the foundations of our IT
society’s infrastructure

• Demand for data computing has grown faster than
technology can sustain

 Datacenters are hitting fundamental technological
barriers:

1. Energy‐scalability wall in computing systems

2. Poor power efficiency in datacenter

Premises and Action Motivation

Innovative Cooling Infrastructure Design

Conclusions
 The results of the project have shown a large impact on a number of areas related to computing systems and datacenters for industry:

• Density, performance, and efficiency: Improved cooling system and management, as well as guaranteed responses and thermal guarantees for computing systems

• Cost reduction for continued growth of datacenter industry: TRANSCEND results have proposed new hardware/software monitoring and cooling techniques to improve datacenter efficiency

• Technology leadership and continued growth: Results applicable in the Swiss industry context


