

FÉDÉRALE DE LAUSANNE

Fast and Scalable System Simulation Of Many-Core Heterogeneous SoCs

Shivani Raghav^{1,} Martino Ruggiero¹, David Atienza¹,

Christian Pinto², Andrea Marongiu², Luca Benini²

¹Embedded System Laboratory, EPFL, ²Department of Electrical, Electronic and Information Engineering, University of Bologna,

Motivation and Challenge

Demand for Hardware Acceleration (On Chip Many-Core Accelerators)

AMD Fusion (on-chip)

Hybrid Cores

Current simulation methods are sequential and slow

STHorm

IOw poweR Many-Core

STmicroelectronics

Heterogeneous

Coprocessors

1000

900

500

400 300 200

Need for a fast, parallel, scalable and inexpensive solution for simulation

Solution – GPGPU Acceleration

Many-Core Single Node Accelerator **High Power** Switch TII M General Purpose CPU

Target Architecture

- Data-Parallel Coprocessors
- Simple In-order Cores
- RISC ARM and CISC x86
- 1000s of cores in a tile network
- Fine grain parallelism

Simulation Features

- Instruction Accurate
- Inexpensive and Easily Available
- Fast Development Cycle
- Portability (Target Independent)
- Interpretation based coresimulation

Simulation Framework

Parallel Target → Parallel Simulator → Parallel Host

Experimental Results

600 MIPS, 800x speed up from multicore host

Simulated Cores on Coprocessor 50 MIPS, 350x speed up from multicore host

Comparison with OVPSim

OVPSim – State-of-the-art parallel simulator on Multi-core Host ■ VISS-ARM ■ OVPSim Better simulation performance with increasing number of cores ~800x speed up Breakeven at simulation of 512 cores

Conclusion

- Challenge and parallel simulator for heterogeneous SoCs
- Solution Parallelize 1000 core simulation using GPUs
- Design Full System Simulation using QEMU and SIMinG-1k
- Results High Scalability and speedup upto 4096 cores