

Scale-Out NUMA

Stanko Novaković,⁺ Alexandros Daglis,⁺ Edouard Bugnion,⁺ Babak Falsafi,⁺ and Boris Grot[‡]

[†]EcoCloud, EPFL [‡]University of Edinburgh

1. Web-scale apps' characteristics

> Offline/Online analytics and online query processing

\succ Common properties:

- Large datasets, many nodes
- Frequent accesses to non-local data
- Individual nodes operate on small data items

• Little work per data item, measured in 100s of ns

Need communication latency \approx computation latency

[Google PageRank]

2. Existing approaches are ill-suited

3. Latency: The pain points

> Shared memory (ccNUMA)

- + Low latency to remote data
- Limited scalability, high cost, single failure domain -

> Distributed memory using TCP/IP over Ethernet

- + High scalability using commodity parts
- High remote access latencies (up to 1000x of local)

> Distributed memory using RDMA over InfiniBand

- + High scalability, low latency at datacenter-sustainable cost
- Latency of accessing remote memory still high (>10x of local)

> Deep Network Stacks

- Significant computation per packet
- Major mismatch with emerging lean-core architectures

> PCIe/DMA latencies limit performance

- Up to 500ns overhead from transfers over PCIe alone
- Lack of coherence requires costly replication of data structures

4. Our proposal: Scale-Out NUMA

> Rack-scale system architecture based on NUMA

- Lean memory fabric
 - + Reliable interconnect with low-radix routers and wide links
- Integrated Remote Memory Controller (RMC)
 - + Cheap sharing of key in-memory data structures
- Global (partitioned) virtual address spaces + Split-phase API for access to non-local data

> Scale-out NUMA architecture

5. Evaluation

A) Emulation platform (for development and testing)

Based on the Xen hypervisor and a ccNUMA server

B) Simulated hardware

 \succ Flexus full-system, cycle-accurate simulation

Transport	soNUMA		
	Emulation	Simulation	RDMA/IB*
Max BW (Gbps)	1.8	77	50
Read RTT (μ s)	1.5	0.3	1.19
Fetch-and-add (μ s)	1.5	0.3	1.15
IOPS (Mops/s)	1.97	10.9	35 @ 4 cores
*Mellanox ConnectX-3 RDMA host channel adapter on host Xeon E5-2670 2.60Ghz via PCIe-Gen3			
Remote latency at small factor of local memory latency			

> Graph processing (PageRank) study

\succ How do we get to ultra-low latency?

- Integration/local coherence for fast access to key data structures
- Kernel bypass allows user to directly interact with the RMC
- Low router pin-to-pin delays and fixed topology
- Small form factor with low inter-node distances

