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COOLIP: Simple yet Effective Job allocation
For Distributed Thermally-Throttled Processors
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Big Goal

In a data-center with multiple processors, where to execute the
next job? Processors often run hot and need throttling.

Thermally Throttled Processors

Most  proces-
Once processor is hot, frequency is reduced gors have in-

built speed scal-
ing. Usage
of the higher
speeds is throt-
tled by temper-
ature. For ex-
ample, Turbo
Boost in Intel
Sandy Bridge
processors can run the processor at up to 1.2-1.3x the Thermal
Design Power (TDP) for up to 30-60s.
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The Allocation Problem
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Feedback sense if a proces-

Temperature sor is active or idle,

Idle/Active and its tempera-

ture.

Idea: Thermally-multiplex jobs amongst the processors, to oper-
ate often in high frequencies.

Minimize Response-Time of the Next Job

Question: Is there a simple strategy which optimally minimizes
the response-time of the next job?
Answer: Only true if the processors are in one of the good states.

State = ((t1, T1), (tQ, TQ), Ce (tnp Tn))

Time when \ ‘ All-idle temperature:
pProcessor Temperature when all
will be idle processors will be idle

Good state: Earliest finishing processor also has the lowest all-
idle temperature, i.e., for some <,

,tn} = = al'g min{Tl, T27 c . ,Tn}

Simple strategy in a good state: Route next job to ¢th processor
This is optimal, independent of all parameters.

arg min{ty, to, . ..

The COOLIP policy
COQOLIP = COOLest among Idle Processors

Route the next job to the earliest available processor. If there are
several available, choose the coolest one.

In a good state, COOLIP optimally minimizes response-time.
Else, no guarantee.

Experimental results
- Processors have Fourier heat dissipation.
-Jobs have Poisson inter-arrival times.

- Execution demand of jobs have a Gaussian distribution.

Deviation of 95-percentile response-time
compared to optimal clairvoyant solution
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-COOLIP performs almost identical to optimal solution.
- Other algorithms perform significantly worse.

-Even additional information such as execution demand of all
pending jobs (load balancer) does not improve over COOLIP.

Why COOLIP works well?

Processor states with COOLIP
define a Markov process. Can
have higher probability. identity the stationary distribu-
30 tion of the states.

Idea: Show that frequent states
are good states.

Stationary distribution

of states. Darker points

Example: A setup with two pro-
cessors. Both sets of frequent
states are good states.
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Conclusions and Outlook

COOLIP is a simple strategy that allocates most ot the packets
optimally, and has a near-optimal 95-percentile response time.
Open challenges: (a) Thermal coupling between processors, (b)
Heterogeneous processors, (c) Bursty job arrival patterns.



