
COOLIP: Simple yet Effective Job allocation!
For Distributed Thermally-Throttled Processors!

YINS RTD 2013 

Pratyush Kumar, Hoeseok Yang, Iuliana Bacivarov, Lothar Thiele!
Computer Engineering and Networks Laboratory, ETH Zurich!

Big Goal
In a data-center with multiple processors, where to execute the
next job? Processors often run hot and need throttling.

Thermally Throttled Processors

0 0.2 0.4 0.6 0.8 1
TLO

THI

Once processor is hot, frequency is reduced

Time

Te
m

pe
ra

tu
re

0 0.2 0.4 0.6 0.8 1

Idle
FLO

FHI

Fr
eq

ue
nc

y

Most proces-
sors have in-
built speed scal-
ing. Usage
of the higher
speeds is throt-
tled by temper-
ature. For ex-
ample, Turbo
Boost in Intel
Sandy Bridge

processors can run the processor at up to 1.2-1.3x the Thermal
Design Power (TDP) for up to 30-60s.

The Allocation Problem

A

H
om

og
en

eo
us

th
er

m
al

ly
-t

hr
ot

tl
ed

pr
oc

es
so

rs

In
co

m
in

g
jo

b
st

re
am

s

..
.

..
.

Feedback
Temperature
Idle/Active

Map incoming job
to one of the pro-
cessors to minimize
response-times.
Processors are iden-
tical and thermally
isolated. Can
sense if a proces-
sor is active or idle,
and its tempera-
ture.

Idea: Thermally-multiplex jobs amongst the processors, to oper-
ate often in high frequencies.

Minimize Response-Time of the Next Job
Question: Is there a simple strategy which optimally minimizes
the response-time of the next job?
Answer: Only true if the processors are in one of the good states.

State =
(
(t1, T1), (t2, T2), . . . , (tn, Tn)

)
Time when

processor
will be idle

All-idle temperature:
Temperature when all
processors will be idle

Good state: Earliest finishing processor also has the lowest all-
idle temperature, i.e., for some i,

argmin{t1, t2, . . . , tn} = i = argmin{T1, T2, . . . , Tn}

Simple strategy in a good state: Route next job to ith processor
This is optimal, independent of all parameters.

The COOLIP policy
COOLIP = COOLest among Idle Processors
Route the next job to the earliest available processor. If there are
several available, choose the coolest one.
In a good state, COOLIP optimally minimizes response-time.
Else, no guarantee.

Experimental results
- Processors have Fourier heat dissipation.
- Jobs have Poisson inter-arrival times.
- Execution demand of jobs have a Gaussian distribution.

Deviation of 95-percentile response-time
compared to optimal clairvoyant solution

0.5 0.6 0.7 0.8 0.9
0.1%

100%

104%

Utilization
2 4 6 8

0.1%

100%

104%

Number of processors

0.1 0.2
0.1%

100%

104%

COOLIP

Load balancer

Random Idle

Round-robin

Mean execution demand
0.25 0.5 0.75 1

0.1%

100%

104%

Ratio of short to long jobs

- COOLIP performs almost identical to optimal solution.
- Other algorithms perform significantly worse.
- Even additional information such as execution demand of all
pending jobs (load balancer) does not improve over COOLIP.

Why COOLIP works well?

0 0.2 0.4 0.6 0.8
−30

−20

−10

0

10

20

30

Time difference (ti − tj)

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (T

i −
 T

j)

Stationary distribution
of states. Darker points
have higher probability.

Te
m

pe
ra

tu
re

di
ff

er
en

ce

Time difference

Processor states with COOLIP
define a Markov process. Can
identify the stationary distribu-
tion of the states.
Idea: Show that frequent states
are good states.

Example: A setup with two pro-
cessors. Both sets of frequent
states are good states.

Conclusions and Outlook
COOLIP is a simple strategy that allocates most of the packets
optimally, and has a near-optimal 95-percentile response time.
Open challenges: (a) Thermal coupling between processors, (b)
Heterogeneous processors, (c) Bursty job arrival patterns.


