

Real-Time Probabilistic Heart-Beat Classification and Correction for Embedded Systems

Grégoire Surrel*, Francisco Rincón*†, Srinivasan Murali*†, David Atienza*

* Embedded Systems Laboratory (ESL), EPFL, Switzerland

[†] SmartCardia Sàrl., Switzerland

Electrocardiogram acquisition and processing

Hospital:

- + Good signal quality
- + High processing power
- Highly invasive (up to 12 leads)
- Expensive
- Bulky

Embedded devices:Variable signal of

- Variable signal quality (noise)
- Low processing power
- + Non-invasive
- + Affordable for individuals
- + Wearable technology

ECG delineation and analysis are performed in real-time on the device, but some algorithms are very sensitive to corrupted data

Goal: Automatic online analysis and correction of heart-beat series on an embedded platform

Probabilistic heart-beat classification

Beats modeled as probabilistic events from an Inverse Gaussian law

- Parameters μ and λ updated for each new beat k
- Beat k-1 classified and corrected as soon as beat k available

Possible outcomes for a single beat:

- Normal beat N
- Extra-beat e
 - (i.e. from muscle noise)
- Skipped beat s
 - (i.e. from bad contact)
- Misplaced beat m

(i.e. ectopic beat)

Reducing the CPU & memory load

Improvements and optimization for embedded platforms done by reducing the complexity:

- Salt-and-pepper filtering of outliers
- Processing window range reduced
- Exponential decay removed
- Alternate estimators of μ and λ

Influence of the training dataset

Results are very sensitive to training:

- The training dataset must be representative
- Relative weighting coefficient need fine-tuning

Average misclassification rate given a HRV-dependent dataset

Training recordings used:

- Reference set
- Low SDNN
- High SDNN
- Low RMSSD
- High RMSSD

Performance evaluation done using the remaining files.

Statistical evaluation for training set:

- Random shuffling of recordings
- Training sets ranging from 10% to 90% of total dataset
- ⇒ Bigger datasets are more representative of HRV diversity

Integration in the processing pipeline

Several processings for HRV analysis benefit from this correction:

• Time-domain: SDNN, RMSSD

• Frequency-domain: LF/HF

⇒ Integration in the pipeline for some RR-based analysis

Results & conclusion

Confusion matrix (72504 beats, 18h of recording, 30% error rate)

		Predicted type			
		N	е	S	m
Real type	N	50642	1	83	30
	е	54	7189	0	7
	S	1	0	7242	3
	m	61	0	34	7157

Classification is right more than 99.5% of the time

Features summary:

- Recovery of highly corrupted series
- Discrimination between different situations (N, e, s, m)
- Affordable computational load for embedded systems
- Fast response to heart-rate change (narrow windowing)
- ⇒ Algorithms using RR-intervals in wearable devices benefit from this automatic classification and correction yielding better results