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Electrocardiogram acquisition and processing

Hospital:
+ Good signal quality
+ High processing power
- Highly invasive (up to 12 leads)
- Expensive
- Bulky

Embedded devices:
- Variable signal quality (noise)
- Low processing power
+ Non-invasive
+ Affordable for individuals
+ Wearable technology

ECG delineation and analysis are performed in real-time on the
device, but some algorithms are very sensitive to corrupted data

'Goal: Automatic online analysis and correction of
heart-beat series on an embedded platform
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Reducing the CPU & memory load

Improvements and optimization for embedded
platforms done by reducing the complexity:

e Salt-and-pepper filtering of outliers

e Processing window range reduced

e Exponential decay removed

e Alternate estimators of y and A
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Integration in the processing pipeline

Several processings for HRV analysis benefit from this correction:
e Time-domain: SDNN, RMSSD

e Frequency-domain: LF/HF

= Integration in the pipeline for some RR-based analysis

Displays the received data and
relays to medical personnel

Probabilistic heart-beat classification
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Beats modeled as probabilistic

events from an Inverse Gaussian law

e Parameters y and A updated for
each new beat k

e Beat k-1 classified and corrected
as soon as beat k available
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Possible outcomes for a single beat:
e Normal beat N
e Extra-beat e
(i.e. from muscle noise)
e Skipped beat s
(i.e. from bad contact)
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Influence of the training dataset

Results are very sensitive to training:
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e The training dataset must be representative
e Relative weighting coefficient need fine-tuning

Average misclassification rate
given a HRV-dependent dataset
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Training recordings used:
e Reference set

e Low SDNN

e High SDNN

e Low RMSSD

e High RMSSD

Performance evaluation done
using the remaining files.

Original

Statistical evaluation for training set:

e Random shuffling of recordings

e Training sets ranging from 10% to 90% of total dataset
= Bigger datasets are more representative of HRV diversity

T
Results & conclusion

Confusion matrix (72504 beats, 18h of recording, 30% error rate)
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Features summary:

e Recovery of highly corrupted series

e Discrimination between different situations (N, e, s, m)

e Affordable computational load for embedded systems

e Fast response to heart-rate change (narrow windowing)
= Algorithms using RR-intervals in wearable devices benefit

from this automatic classification and correction yielding
better results




