

swiss scientific initiative in health / security / environment systems

Energy Aware Platform for Wearable Smart Medical Sensors

Ivana Unkovic, Dennis Majoe, Thomas Gross

ETH Zurich

Modeling of thermal energy harvesting under different conditions

Clinical algorithm development – EEG

- Variable behavior of ambient source energy results in different amount of energy available over time
- Modeling of energy harvesting provides the forecast of source availability and estimates the expected energy

Thermal energy generators

Child wearing TEG band doing everyday activities

- Evaluating differences between
 - Indoor, outdoor
 - Still, active
 - Elderly, children

- Analyze the computational complexity of different clinical algorithms for automated detection of epileptiform discharges:
 - 1. Wavelet analysis
 - 2. Matched filter

Test the efficiency in detecting epileptiform activities in comparison with power consumed in completing the task

Wavelet analysis

- Multi-resolutional analysis
- Advanced matching technique in spike detection

A Real-time QRS detection algorithm: Pan-Tompkins

- QRS complex detection based upon digital analysis of slope, amplitude and width
- Solar panel provides enough energy for substantial medical processing

 \bullet

Matched filter

Efficient method to detect specific patterns (events) in the signal

Demonstrator

- TEG and solar energy harvesting
- Modeling and prediction of energy harvesting
- EEG recording and seizure prediction using energy aware run time

Testing power management techniques of the platform by measuring power consumption of the implemented algorithm

Power consumption at 200 Hz	No function	Band-pass filter
No power management	8.59 mW	8.59 mW
Power management	6.55 μW	0.4842 mW
Deep sleep	1.71 μW	6.11 μW

Actual PCBs of processor unit and active electrode

- Five high speed and eight low speed analog electrodes for ECG or EEG recording
- One system for epilepsy monitoring and three systems for recording data for Alzheimer's disease