

Development of a Mathematical Model of the Electrical Properties of Bone

Thomas Wyss¹, Juan Ansó², Soma Vesztergom⁵, Brett Bell², Enric Muntane³, Damien Ferrario³, Hans Siegenthaler⁵, Peter Broeckmann⁵, Andreas Stahel⁴, Philippe Büchler¹

¹Institute for Surgical Technology and Biomechanics (ISTB), University of Bern;

²ARTORG Center for Biomedical Engineering, University of Bern;

³Centre Suisse d'Electronique et Microtechnique (CSEM), Neuchatel;

⁴Mathematics, Bern University of Applied Sciences;

⁵ Department of Chemistry and Biochemistry, University of Bern

Η

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Scope and F	Purpose
-------------	---------

Materials & Methods

Direct Cochlear Access (DCA) aims to replace mastoidectomy

Determination of the electrical properties of bone tissue

in-vivo study to measure electrical properties of bone tissue

- Precise robot blindly drills a tunnel to reach the cochlea
- No visual access to OP field

UNIVERSITÄT

BERN

- Narrow drilling trajectory sets delicate vital structures at risk
- Electromyography (EMG) has been proposed to assess drill to nerve distance
- Current development lacks sensitivity and specificity
- Bone electric properties required to improve the predictions
- Development of tools to machine accurate bone samples.
- Development of protocol to keep bone samples as fresh as possible (no freezing, short storage time)
- Measurement of the trabecular and cortical bovine bone
- Determine and minimize adverse influences on measurement system.
- Development of measurement setup to in-vivo measure bone impedance in a sheep model
- Apply electro impedance spectroscopy (EIS) sinusoidal waveforms with frequencies 15Hz, 110Hz and 1070Hz and current magnitudes of 125µA, 250µA and 500µA.
- Results to verify the accuracy of mathematical bone models.

 \Rightarrow Further knowledge about the electrical properties of the mastoid bone is essential. \Rightarrow A mathematical model of the electrical properties of bone tissue will help understanding electrical mechanisms.

Comparison of different bone impedance measurement protocols at a frequency of ~1100Hz

In-vivo impedance measurement (1070Hz)

Sheep study: inserted multi-electrode probes

Trajectory distances from 5.69 mm to 9.98 mm.

Maacurad with a) staal multi alastrada

Measurement of NaCl with sheep setup (1070Hz)

Electrode distance 6.5 mm

Measured with a) steel multi-electrode.

Ex-vivo impedance measurement (1099Hz)

microCT 40 (resolution 16µm) Bovine trabecular bone sample \emptyset 8mm h:2mm

Measured with gold contacts

• Measured with a) steel multi-electrode.										
 Sheep Model 										
	Ring	Tip								
Impedance MEAN	1.7 kΩ	11.9 kΩ								
Impedance SD	600 Ω	9.26 kΩ								
Phase MEAN	-45.99	-42.74								
Phase SD	9.49	6.19								

Impedance magnitude correlates with trajectory distance (Pearson: r = 0.766).

• Use of sheep measurement system. Ring Tip Impedance MEAN 1.090 kΩ 423 Ω Impedance SD 22 Ω 156 Ω Phase MEAN -71.42 -54.44 0.77 Phase SD 2.06

Multi-electrode probes

Impedance lower than in sheep study where current flow was restricted to conductive cavities within the tissue

	a)	b)
BV/TV	0.099	0.453
Impedance	727Ω	3.24 kΩ
Phase	-31.2	-34.7
Resistivity	18.25 Ωm	81.32 Ωm
Resy. NRM BV/TV	18.25 Ωm	17.77 Ωm
Resistivity in litera	iture	12.2 Ωm

Modeling bone impedance

Main Findings:

- In-vivo impedance magnitude correlates with trajectory distance (Pearson: r = 0.766).
- Stainless steel electrodes cause phase shift in body fluid electrolyte.

NaCl impedance measurement $423/1090 \Omega$ • NaCl impedance simulation $110/640\Omega$

- Field in non conducting bone
- Due to high distance P2-FN, nerve should not trigger

B: Current Density @1000Hz [A/m²] (Sheep mastoid) **P1: GND P2: 125μA** Blood @1000Hz:

- No current flow in the FN
- Fig. 2 a): High current density caused by small cavity touching P2 behind the electrode.

			*	¥													2			
1	1	1	ļ	ţ	1	/	1	1	+	-+	1	/	/	1	I	Ţ	1	1	· ·	50
/	/	ļ	ļ	ł	1	1	/	1	t	1	1	/	1	1	1	t	1	١	~	50
1	,	ļ	ļ	t	1	\mathbf{i}	/	1	1	1	/*	/	1	1	t	t	t	۲	Ň	

Color = current densitiy, simulation of tip-tip configuration

			1 1	+ +	/ /		1	t †	ļ	1 1	, 🔺	17.2[
1 1 1	t <i>t f</i>	1 1	1 1	1	/		1	1 1	ļ	1 1	/ 「	1
<u> </u>	t <i>t t</i>	1 1	1 1	+ +			t	ļ <i>ļ</i>	1	1 1		16
\times \wedge \wedge	t t 1	1 1	1 1	†		1	t	ļ <i>ļ</i>	1	11	1	14
~ ^ \	<u>\</u>	1 1	1 -	+ +	+ /	1	ţ	↓ <i>↓</i>	1	11	~	12
~ ~ `	1 / 1	<u> </u>			+ +	~~	/		1		-	12
⊷ ← ←		-	→ →	→ →		-					+	10
			1			1			~ ·	1	+	8
111	1 1 1	$t \neq $	/	1	- 1	1 1	t	1 1	1	~ ~		6
111	1 1 1		/	1		1 1	1	1	۲	1 1		Л
/ / /			/	† †	- 1	1 1	t ▼	1 1	1	1 1		7
			/	+	- 1	1 1	t	t t	1	1 1		2
				1	11	11	1	<i>t</i> t	t	1 1	X	
Color =	current d	ensitiv.	simula	ation (of ring	-ring	conf	igur	atio	า		

- Current density 10 times higher in tip configuration.
- Tip-tip Impedance 640 Ω
- Ring-Ring Impedance 110 Ω

- Electrochemical effects at the interface; stainless steel contact affects measurements
- Lower contact surface leads to higher impedance for both measured and simulated impedance.

The resistivity of the \varnothing 8mm bovine sample at 1kHz is in the same range as in the literature. Impedance seems to be linearly correlated to BoneVolume to TotalVolume ratio (BV/TV). Resistivity might be normalized to BV/TV. Tentative evaluation shows inconsistencies in impedance at lower frequencies. Measurement setup not yet suitable to measure impedance with voltages above 1V (complex) electrochemical processes)