

swiss scientific initiative in health / security / environment systems

Dynamic Health Data Aggregation for the Research Purposes

Hes.so/// VALAIS WALLIS

A. Dubovitskaya^{1,2}, V. Urovi¹, I. Barba³, K. Aberer², M. I. Schumacher¹

¹Applied Intelligent Systems Laboratory, HES-SO VS, Switzerland ²Distributed Information Systems Laboratory, EPFL, Switzerland ³Information Security Group, UPC, Spain

UPC

How to aggregate medical data dynamically adapting to the requirements of a research study?

Multi-Agent System (MAS) for Dynamic Data Aggregation

Architecture

Characteristics

- Dynamic
 - Negotiation phase to adapt to the requirements of the study
- Distributed
 - Allows to collect more data during the shorter period \checkmark
- Takes into account data requirements
 - Improves the utility
- Preserves secure and privacy
 - Medical data are protected
- Boosts the utility with the growth of the DB
 - Utility is **max** wrt the current state of the DB
- Agents are connected into P2P network through the **Publish-Subscribe Broker** (based on the KW (keywords))
- Negotiation is built using **TuCSoN** a coordination model for negotiation and data exchange through the tuple centers

condition 1: $(KW(RSDB) \subset KW(LDB)) \land (range_{attr}(RSDB) \subset range_{attr}(LDB)) \land$ \wedge (N_{rec}(LDB)>0).

Rules

 A_2 (replies t_2)>({**Efavirenz**; **any age**}, {<u>age</u>, (0; 100); <u>gender</u>, any; <u>dosage</u>, any; <u>measurments</u>, any}, 50)

Conclusion & Future Work

- A framework of MAS for dynamic health data aggregation has been proposed, it is currently being implemented
- MAS will be evaluated using the synthetic data and genuine patients data in the framework of Nano-Tera ISyPeM2 project
- Dynamic aggregation of medical data for research will help to put into practice TDM, that will be assisting medical doctors and will significantly improve patient care

References

- E. Nardini, M. Viroli, and E. Panzavolta. Coordination in open and dynamic environments with TuCSoN semantic tuple centers. In Proceedings of the ACM SAC, New York, NY, USA, 2010.
- E. Denti, A. Natali, and A. Omicini. On the expressive power of a language for programming coordination media. In Proceedings of the of the ACM SAC, 1998.
- A.Dubovitskaya, V. Urovi, K. Aberer and M. Schumacher, An Agent Framework for Dynamic Health Data Aggregation for Research Purposes, A2HC Workshop in conj. with AAMAS 2015.