
Approximate Computing Units for an Ultra-Low Power Platform

IcySoC RTD 2013

Michael Gautschi1, Antonio Pullini1, Frank K. Gürkaynak1, Luca Benini1

1Integrated Systems Laboratory, ETH Zürich

2014 2015 2016 2017

In collaboration
with EM-Marin

180 nm

Pulp v1
First PULP cluster in 

28nm FDSOI RVT

Or10n
Optimized Processor in 

180nm

Sir10us
Or10n with crypto 

coprocessor in180nm

Pulp v2
PULP cluster in 

28nm FDSOI LVT

Pulp v3
Improved PULP cluster in 

28nm FDSOI LVT

PULP 
CLUSTER #1

PULP 
CLUSTER #2

PULP 
CLUSTER #3

PULP 
CLUSTER #N…

High Speed Local Interconnect BusInterface

L3 Memory

Visit our chip gallery

h
tt

p
:/

/a
si

c.
et

h
z.

ch

PULP stands for Parallel Ultra-Low Power Processor Architecture and is actively
being developed by the Integrated Systems Laboratory of ETH Zürich. Our goal is
to develop a system that has the same energy efficiency regardless of the
computational load. We call this property energy proportionality. Our system
works very well when there is little to do but is equally efficient when the work
load increases. This is different form other processor systems which are
optimized to work well at one corner, but do not scale well.

• Our many-core architecture is organized in clusters. Each cluster consists of
simple RISC cores which have been optimized for the cluster. Our current
core is based on the OpenRISC ISA from opencores.org.

• A shared L1 memory, so-called Tightly-Coupled Data-Memory (TCDM) is
used to efficiently share data structures.

• To add floating point support we have designed an FPU which can be used in
a private and a shared setting in combination with an interconnect.

• In addition, we have looked in FPU approximation and a logarithmic number
system.

PULP Architecture

Instruction Extensions

Float representation:

LNS representation:

sa= sign(a) la = log2(|a|)
Advantages: (single cycle computation of complex functions)
Simple multiplication, division, powering which can be computed with the processors
integer unit!

Disadvantages: (non linear functions)
Addition and subtraction and type casts are non linear and have to be approximated!

Logarithmic Number Unit

4

3

a = (-1) sa*(1+m)*2exp

a = (-1)sa*2Ia

Addition:
Ires = lx + log2(1+2ly-lx)

Subtraction:
Ires = lx + log2(1-2ly-lx)

LNU Datapath:

Timing Area Add/Sub Typecast

ELM 1

180 nm
13.15 
ns

905’000 µm2

97 kGE


Rom-less LNS 2

180 nm
14.6 ns 584’000 µm2

62 kGE


Selene, this work
65nm

4.35 ns 72’000 µm2

63 kGE
 

Fplus:
• 2nd order Taylor

Fminus(not critical):
• 2nd order Taylor

Fminus (critical):
• Cotransformation

to eliminate the 
critical region

[1] The European Logarithmic Microprocessor, J.N Coleman et.al, 2008
[2] ROM-less LNS, R.Che Ismail and J.N Coleman, 2011
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Current PULP architecture FPU Extensions
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Hardware loops:
• Allow to get rid of loop overhead (branch, compare 

instructions) in regular loop structures, such as for-
loops.

• A hardware loop is fully defined by:
• Start address
• End address
• Number of iterations

• Setup possible in only one instruction

Pre-/post increment memory addressing:
• Effective memory address (EA) is computed:

EA = rA + signext(offset)
• With auto-incrementation it is possible to store this 

address in the register file.
• Allows to update counters, addresses, etc. in 

parallel.

Vector ALU Unit:
• Possible to operate on byte, and halfword level
• Unaligned memory access implemented with two 

subsequent memory requests.
=> No hardware overhead

Performance Results with ISA-extensions:
• Baseline ISA compared to ISA extensions:

1

FPU Area Total Area Timing FPU-Latency

Artemis
Private FPU

48 kGE
(12kGE/FPU)

563 kGE 300 MHz 2 cycles

Hecate
Shared FPU

22 kGE
(11kGE/FPU)

557 kGE 300 MHz 3 cycles

Diana
Approximate FPU

38 kGE
(11/10/9/8) kGE

553 kGE 300 MHz 2 cycles

Floating Point Units

Hw-loop extensions:

Vectorial Adder:

Unaligned Memory Access:

OR10N Block Diagram:

FPU Design:
• Implementation of a FPU to be integrated in

the Or10n core.
• Supported FPU instructions: (IEEE single

precision):
• mult, add, sub, comp, type casts

• Fused data path for minimal hardware costs.

Private vs shared FPU:
• FPUs are not utilized 100% and therefore

remain idle for a large number of cycles.
• Sharing FPUs in hardware leads to better

utilization of the computation units, and is
not seen by the application designer.

• M different FPUs can be shared among N
cores using our developed interconnect
which guarantees perfect and fair arbitration
while minimizing its area and latency.

The case for approximate FPUs:
• If full precision is not required it is

either possible to save in area or delay.
• Together with ICLAB we have designed

three different approximate FPUs and
integrated them in a 65nm chip called
Diana.

Final Layout of Hekate
( 2 shared FPUs):

FPU Architecture:

FPU Interconnect:

Summary:

Imul = log2(x*y) = log2(2Ix * 2Iy) = Ix + Iy

Idiv = log2(x/y) = log2(2Ix / 2Iy) = Ix - Iy

powering: x123.74=> Ix * 123.74

OpenRISC Instruction-Set Extensions:
Several ISA-extensions have been analyzed and implemented in order to 
increase computational efficiency of the OR10N core.

The logarithmic number system can be used to exploit a larger dynamic
range. The format has its pros and cons, but leads to attractive results. We
have developed a Logarithmic Number Unit (LNU) which achieves IEEE single
precision and can be used as a replacement to a FPU.


