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PULP Architecture Current PULP architecture FPU Extensions

PULP stands for Parallel Ultra-Low Power Processor Architecture and is actively ‘ ‘ ‘ ‘

being developed by the Integrated Systems Laboratory of ETH Zirich. Our goal is o Shared LNU Shared FPU
to develop a system that has the same energy efficiency regardless of the TCDM TCDM TCDM TCDM TCDM TCDM
computational load. We call this property energy proportionality. Our system L2 “ MBemfl’(rv 'V'BemT(rv 'V';mirv Msmirv Memory | Memory
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works very well when there is little to do but is equally efficient when the work 41 42 ¥3 44 ] .
load increases. This is different form other processor systems which are
optimized to work well at one corner, but do not scale well. pumm DMA

TCDM Logarlthmlc Interconnect FPU Interconnect
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OpenRISC OpenRISC '—— OpenRISC 7 -u.!.-u.!.-.-.-.-.-.F-.-.-.-.-.-.-.-.-.-.-.-.-.

* Our many-core architecture is organized in clusters. Each cluster consists of
simple RISC cores which have been optimized for the cluster. Our current
core is based on the OpenRISC ISA from opencores.org.

e A shared L1 memory, so-called Tightly-Coupled Data-Memory (TCDM) is
used to efficiently share data structures.
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* To add floating point support we have designed an FPU which can be used in A
a private and a shared setting in combination with an interconnect.

Instruction Instruction Instruction
Cache Cache Cache

Interface

* |n addition, we have looked in FPU approximation and a logarithmic number
system.

Instruction Extensions

Interface

OpenRISC Instruction-Set Extensions:
Several ISA-extensions have been analyzed and implemented in order to
increase computational efficiency of the OR10N core.

L3 Memory

Hardware loops: Hw-loop extensions:
* Allow to get rid of loop overhead (branch, compare
instructions) in regular loop structures, such as for- ' . . .
loops. I t h e b -
A hardware loop is fully defined by: — F oat’ng PO’nt Un'ts Logarlt mlc Num er Un’t
e Start address

hwloop_regid \:i
iy
H

e End address
e Number of iterations

hwloop registers q . . . . .
. Setup possible in only one instruction . FPU Design: EPU Architecture: The logarithmic number system can be used to exploit a larger dynamic
Vectorial Adder: i - - - -
L - * Implementation of a FPU to be integrated in | range. The format has its pros and cons, but leads to attractive results. We
Pre-/post increment memory addressing: the Or10n core. have developed a Logarithmic Number Unit (LNU) which achieves IEEE single
«  Effective memory address (EA) is computed: * Supported FPU instructions: (IEEE single == precision and can be used as a replacement to a FPU.
— A + Si o precision): .
- EA rA SIgneXt(Offset) c . otz e ° mult add SUb Comp t pe casts Float representatlon.

* With auto-incrementation it is possible to store this S e ’ p == L y ‘ a = (-1) % (1+m)* 29 ‘ Sa la

address in the register file s — * Fused data path for minimal hardware costs. |, ~

' : v VLT > LNS representation: integer fractional

* Allows to update counters, addresses, etc. in ST - . ]

parallel. e Private vs shared FPU: a=(-1)e*2" | % 28 22 0

* FPUs are not utilized 100% and therefore | | .

Vector ALU Unit: remain idle for a large number of cycles. s,= sign(a) , =log,(lal)

Advantages: (single cycle computation of complex functions)

e Sharing FPUs in hardware leads to better
Simple multiplication, division, powering which can be computed with the processors

utilization of the computation units, and is

ID Stage

e Possible to operate on byte, and halfword level
* Unaligned memory access implemented with two

L : integer unit!
subsequent memory requests. not s‘een by the application designer. |
=> No hardware overhead * M different FPUs can be shared among N - - = log,(x*y) = log,(2x * 2v) = powering: x!2374=>| *123.74
cores using our developed interconnect I o
= log,(x/y) = log,(2™x / 2v) =
which guarantees perfect and fair arbitration FPU Interconnect: 8,(x/y) = log,(2%/ 2Y)
while minimizing its area and latency. Disadvantages: (non linear functions)
= e m—— e Addition and subtraction and type casts are non linear and have to be approximated!

Final Layout of Hekate

( 2 shared FPUs): Addition:
o=+ Iog2(1+2'v-'x)\

Performance Results with ISA-extensions:

Subtraction:
os = |+ 10g,(1-2v"x)
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LS = * Together with ICLAB we have designed
i . LS, 1 HWLP &3 _ _ . .. .
OR10N Block D'agram]' [ (S, 2 HWLP mm three different approximate FPUs and - Fminus (critical):
Instruction Cache - LO Buffer TCDM - Log Interconnect LS, 3 HWLP mm . . .
LQ_G integrated them in a 65nm chip called _
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