

Multi-color single-beam QCLs

Martin J. Süess¹, Johanna Wolf¹, Selam Nida¹, Pierre Jouy¹, Mattias Beck¹, Emilio Gini², Jérôme Faist¹

¹Quantum Optoelectronics Group, ²FIRST laboratory ETH Zürich, CH-8093 Zürich, Switzerland

Motivation & Goal

Gas sensing is an important method with applications in environmental monitoring, air quality control, process control, medical diagnosis, leak detection, traffic security...

• Laser spectroscopy in single instrument

• High sensitivity from efficient multipass cell

IrSens I approach:

• Portable

• Detect the 10 most common environmental gases in one optical setup

State of the art:

- Combination of several detection systemas
- Bulky
- Expensive
- High power consumption

IrSens II approach:

- Leverage on IrSens
- Add wavelengths (Lasers) for more gases
- Use the same setup, get 10 for 1

Left: rack with gas analyzers, picture taken at NABEL station Zürich **Right:** IrSens II target instrument

Lower cost and power consumption

Can be achieved with 7 laser frequencies \bullet

Gas	Typical conc. range [ppb]	Frequency [cm ⁻¹]
NH ₃ (ammonia)	2-20	1046.4
O ₃ (ozone)	5-200	1046.4
CH_4 (methane)	1700	1275.5
N ₂ O (nitrous oxide)	331	1275.5, 2179
SO ₂ (sulphur dioxide)	0.1-10	1352
NO ₂ (nitrogen dioxide)	1-100	1600
NO (nitrogen monoxide)	1-100	1900
CO (carbon monoxide)	1-10	2179
CO ₂ (carbon dioxide)	380 ppm	2281.5
H ₂ O (water vapour)	0.2-4 %	1275.5, 2179

Idea: 3 multi-color DFB-QCLs to keep the optical complexity low lacksquare

Species	Frequency (cm ⁻¹)	Device type
NH ₃ ; O ₃	1046.4	Vernier tuner
CH ₄ ; N ₂ O; H ₂ O	1275.5	(alternatively triple
SO ₂	1352.0	section DFB)
NO ₂	1600.0	Multi costion DEP
NO	1900.0	Multi Section DFB
CO; N ₂ O;H ₂ O	2179.0	Multi costion DEP
CO ₂ (¹² C & ¹³ C)	2281.5	WUILI SECTION DEB

Multi-section DFBs

Vernier tuners

realized multi-section We have DFBs (see schematic drawing) which are able to emit two colors or together. separately The performance of the devices allow for good mode isolation and long-pulse operation with pulse length over 100 µs. Thus, these devices can be used in intermittent continuous wave operation.

(arl

(a) A schematic representation of the device concept for the triple color DFB laser. The device consists of two sections (front and back) with combined and sampled Bragg reflectors selective for the desired wavelengths. The reflectivity of the reflectors of the back section are shifted ~1-5 cm⁻¹ with respect to the front section.

(b) Simulated reflectivity of the front (orange) and back (blue) reflector. Tuning by means of internal temperature modulators or specific driving conditions leads to shifts of the reflectivity more than 3 cm⁻¹ [3], which allows to compensate the designed shift between the two reflectors, and thus matching the reflectivity for one of the three desired wavelengths.

Current density (kA cm⁻²)

Some device drawbacks include that the due to sequential pumping and losses in unpumped sections of the DFB grating prohibit a complete single mode operation. This flaw can be corrected with anti-reflection appropriate coatings (see spectra)

The device sections are pumped simultaneously, thereby using the full length of the device and the gain medium. The included temperature modulation layer is used to shift the front or the back section to match the reflectivity of a single particular frequency to the other section. Thus, single mode operation at a three specified frequencies will be possible, without the drawback of flawed mode-control.

