

swiss scientific initiative in health / security / environment systems







Sub-300 fs-MIXSEL C. G. E. Alfieri, M. Mangold, S. M. Link, D. Waldburger, M. Golling, B. W. Tilma, E. Gini and U. Keller ETH Zurich, Institute for Quantum Electronics, Ultrafast Laser Physics



integration of

**SESAN** 

saturable absorber

**Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich** 

# Motivation

Potential applications of ultrafast **semiconductor disk lasers** (SDL)

optical communication



biomedical imaging

# **MIXSEL** concept

semiconductor based 

- integrated saturable absorber
- power scalable
- potential for monolithic design
- low noise operation

VECSEL

**MIXSEL** 



natural user interface



frequency combs

### first Watt-level femtosecond VECSEL<sup>[1]</sup>

■ 784-fs-pulses with >1 W output power in a 5.4 GHz V-cavity

## first CEO-frequency detection of a SESAMmodelocked VECSEL<sup>[2]</sup>

- amplified and recompressed 238-fs pulses from a 100-mW VECSEL
- [1] M. Hoffmann *et. al.*, Optics Express (2011) vol. 19, 8108-8116 [2] C.A. Zaugg et. al., Opics Express (2014) Vol. 22, 16445-16455



| n                                                                                                                                                                                                                                                                                                                      | nodelocking r       | results           | Vertical External C<br>Surface Emitting I | Cavity<br>Laser | Emiconductor<br>Saturable Absort<br>Mirror    | Modelock<br>per Integrated<br>Cavity Su<br>Emitting L | ed<br>I External-<br>rface<br>.aser |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                        | 28.1 ps             | 6.4 W             | 2.5 GHz                                   | 🗯 higi          | highest output power of a                     |                                                       |                                     |  |  |
| pu                                                                                                                                                                                                                                                                                                                     | Ise duration        | output power      | repetition rate                           | moo             | modelocked semiconductor laser <sup>[4]</sup> |                                                       |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                        | 16.9 ps             | 2.4 W             | 10 GHz                                    | i high          | est output pow                                | ver of a model                                        | ocked                               |  |  |
| [4] B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, Opt. Exp. (2010) vol. 18, pp. 27582<br>[5] V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Südmeyer, U. Keller, Electronics Lett., vol. 48, No. 18, pp. 1144, 2012 |                     |                   |                                           |                 |                                               |                                                       |                                     |  |  |
| 104                                                                                                                                                                                                                                                                                                                    | 40 nm               | - MIXSEI          |                                           |                 |                                               |                                                       |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                        | Structu             | ral improvement   | ts                                        |                 | heat-sink                                     | MIXSEL chip                                           | output<br>coupler                   |  |  |
|                                                                                                                                                                                                                                                                                                                        | Strain comper       | nsated active reg | jion for lasing at                        | 1040nm          |                                               |                                                       |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                        | <b>Optimized AR</b> | section for redu  | ced and flat disp                         | persion         |                                               |                                                       |                                     |  |  |

Intracavity Brewster plate for linearly polarized laser beam



# **Repetition rate scaling to 100 GHz**<sup>[3]</sup>

- straight cavity for nearly arbitrarily high repetition rates
- negligible Q-switching instabilities for semiconductor gain materials
- integrated absorber: no cavity dependent mode-



#### size difference on gain/absorber

## results of repetition rate scaling

- sub-4-ps pulses and watt-level operation up to 15 GHz
- femtosecond operation at 60 GHz and 101 GHz
- excellent beam quality:  $M^2 < 1.05$
- highest repetition rate of any fundamental mode locked SDL





[3] M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, Optics Express, vol. 22, No. 5, pp. 6099-6107, 2014

# Towards an MOVPE grown MIXSEL

- Single MIXSEL growth run
- More uniform structure for better performances
- Industry-oriented large scale MIXSEL production

Need to optimize low temperature grown saturable absorbers from MOVPE

Frequency Resolved Optical Grating (FROG)



Brewster plate

■ first fs-MIXSEL<sup>[6]</sup>

new MIXSEL

**Regrown structure:** 

1000

 $(fs^2)$ 

AR coating and active region MOVPE grown **DBRs** and absorber MBE grown

| pulse<br>duration | output | repetition |  |
|-------------------|--------|------------|--|
| 253 fs            | 235 mW | 3.35 GHz   |  |

- Shortest pulse duration from a MIXSEL (<300 fs)
- Highest peak power from a MIXSEL (>240 W)



#### **MOVPE** absorber characterisation

### Single quantum-well absorber



8.0 **Je ö** 0.8 ha 12  $0.6 \mid \tau_p = 253 \text{ fs } /$ 0.6 8 Microwave spectrum with minimal **0**.4 0.4 (rad) **E** 0.2 resolution bandwidth and high SNR 0.0 500 -1000 -500 10ŎŎ 1030 0 ž Wavelength (nm) Time (fs) [6] M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, Opt. Express 21, 24904-24911 (2013). Outlook

> sub-200-fs pulses with > 1W average next steps: output power from a MIXSEL

ultimate goal: fully stabilized frequency comb (repetition rate & CEO-frequency) from a compact, low cost MIXSEL



2

-2

1060

(rad)

6.53 nm<sup>-</sup>

1050

1040