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Introduction
Integrated PEC devices, which are composed of an integrated traditfional photovoltaics
(PV) component and an electrolyzer (EC) component, allow to circumvent some of the il —“Tpénl_w
challenges imposed by solid-liquid interface in traditional PEC devices, and operate at ot el i el
higher efficiencies than externally wired (non-infegrated) PV plus EC devices. To make Lo o o
the integrated devices economically competitive, we have employed concentration of S hE eonthet
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irradiation. R X N,
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We proposed a novel integrated design, shown in fig. 1, combining EC, PV and o
concentrator [1]. We developed, a coupled 2D multi-physics model of the proposed mode K o
concentrated PEC device. The model includes radiative heat transfer in the AR
- - - - - Anodic chamber
concentrator, electfromagnetic wave propagation in the semiconductors (a triple/dual ]
. . . . X = Water flow direction
junction solar cell), charge generation and transport in the photoabsorbers and the ), = = Light flu direetion
integrated electrolyzer (polymeric electrolyte and solid electrode), electrochemical
reaction at the catalytic sites, fluid flow and species transport in the channels delivering
the reactant (water) and removing the products (hydrogen and oxygen), and heat
transfer in all components. Fig. 1 3D schematic (not to the scale) of the integrated PEC. 2D simulation domain is the xy-plane.
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Methodology Results
We have completely automatized the simulation flow using multiple interactions We analyzed the effects of top cooling water channel, on PV's absorption.
petween MATLAB, COMSOL and wxAMPS [2], shown in fig. 2, for our 2d coupled _
multiphysics model of the proposed concentrated PEC device. WATER WATER AIR ] I |
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