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Hematite (α-Fe2O3) is an important photoanode material capable of high quantum conversion efficiency in the oxygen evolution reaction
upon water splitting. However, one primary limitation for the application of ultrathin hematite layer is the slow transportation of photoexci-
-ted electrons to an external circuit, increasing efficency losses during operation. It has been shown that these losses can be limited by
implementation of metal oxide interfacial layers, such as Nb2O5, SnO2, SiOX and SnO2, between conducting substrate and ultrathin hem-
-atite layer. However, the detailed mechanism for electrode activation is still unknown. In the present study, synchrotron-based X-ray
spectroscopy is used to study the electronic structure origins of interfacail enhancement in metal oxide/hematite photoanodes.

Introduction

Preparation & Photoelectrochemical Analysis
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Ultrathin Hematite: ~ 20 nm by spray pyrolysis
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SnO2: ~ 3 nm, Nb2O5: ~ 5 nm by ALD

SnO2-Fe2O3 Nb2O5-Fe2O3 FTO-Fe2O3

Onset 
 (VRHE) 0.88 0.97 1.06

Onset potential shift to cathodic direction with SnO2 and Nb2O5 underlayer.
The EIS feature at high frequency relates to charge transfter on substrate-hematite interface. One
more Randle Circuit added for EIS analysis.
Interfacial-charge-transfer resistance decreases after implementation of SnO2 and Nb2O5 underlayer.

Kelvin probe suggests increased interface band bending by underlayer, improving charge transfer
on substrate-hematite interface.

SnO2-Fe2O3 Nb2O5-Fe2O3 FTO-Fe2O3

∆φ (eV) 0.92 0.83 0.79

∆φ by Kelvin probe spectroscopy

Hematite Samples for Interface Analysis
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XPS & NEXAFS studied in ALS BL 9.3.2

Hematite with gradient thickness prepared to identify
substrate-Fe2O3 interface

O 1s XPS & NEXAFS
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O 1s core level XPS
Crystal lattice O increases when hematite deposited on the substrates, especially for the ones with
metal oxide underlayers, suggesting that SnO2 and Nb2O5 improve crystallinity of ultrathin hematite.
It matches SEM results.
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Unoccupied states filled
with underlayers

Crystal-field splitting enhanced
with underlayers

O k edge NEXAFS

FTO-Fe2O3SnO2-Fe2O3

FWHM of 
fitted t2g peak 0.9258

Nb2O5-Fe2O3

1.56 1.6

Unoccupied O p states below the lowest unoccupied Fe d orbitals (features around 526.5 eV) are 
presented by FWHM of t2g peak, and it shows that they are eliminated with metal oxide underlayer,
suggesting reduced displacement of Fe3+ ions in the corundum structure and improved crystallinity.
Features around 528.3 eV  represent crystal-field splitting of hematite. The broadening of Fe 3d-O 2p
hybridized states reduced with metal oxide underlayer, leading to improved p-d orbital hybridization.

Conclusion

Interface of metal oxide/ultrathin hematite was studied. Two metal oxides chosen: SnO2 & Nb2O5

Impedance spectroscopy suggests improved interfacial charge transfer on substrate/hematite inter-
-face. It may be attributed to stronger band bending on interface.

O 1s XPS shows improved crystallinity and reduced oxygen vacancy with implantation of underlayer

Metal oxide underlayers have been shown to improve the degree of p-d orbital hybridization.
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