RTD 2013 FENSNF

nano-tera.ch
swiss scientific initiative in health / security / environment systems
Real-Time State Estimation of Active Distribution Grids
using the Kalman Filter  ({l
L. Zanni, R. Cherkaoui, and M. Paolone FEDERALE DE LAUSANNE
EPFL

Why State Estimation in Smart Grids

How can I optimally

> dispatch the energy
% .00 produced ?

Producer

How can I optimally
operate my grid ?

How can I optimally
manage my consumption ?

Consumer

Background and Challenge:

State Estimation is performed
only in transmission grids using
the well-known Weighted Least
Squares (WLS) algorithm.

Kalman Filter, although in
principle can provide better
results, has never been applied
to power grids because of:

* its computational complexity
and implementation;

difficulty to define an exact
prediction model including
its covariance matrix.
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“I need the knowledge of the grid state”

Grid

S Optimal dispatch the
monitoring

energy resources

Demand-side
management

Real-Time
State Estimation Voltage

+ Accurate control
+ fast (sub-second)

+ Reliable Fault detection

and location

State estimation is a statistical procedure that processes
the measurements in order to get the most likelihood
state of the grid (voltages, currents, power flows, etc.).

Adopted Prediction Model:

Kalman Filter prediction:
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XkaPk :* Xk+1’Pk+1

Estimated state Predicted state
and its covariance and its covariance
at time-step k for the next time-step k+1

The adopted Prediction Model is:
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I uncertainty of the prediction.
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Achievements

using several IEEE benchmark grids
(13-bus, 34-bus, 123-bus)
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We assess the matrix Q on-the-fly using
the last N estimated states:

Yy, = f(k_j -X, . (j=L..,N)
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| Q is the sample variance of the vector of
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Main Features of our State Estimator

PMU Measurements: voltage and current synchrophasors (amplitude and phase):

very accurate very frequent synchronized
(every 20 milliseconds)

The use of PMU measurements leads to an exact measurement model, therefore the
state estimation algorithm is not iterative (increasing speed and accuracy).

Kalman Filter algorithm: recursive state estimator that processes the
measurements, but also predicts the state of the grid.

Phasor Measurement Unit - PMU Grid
parameters

Measurement

model “Estimation”
Measurement
Prediction Update

model

GPS  Voltage / current
signal signals

Kalman filter vs. WLS:

As long as the true state x, satisfies the
adopted prediction model

v

the Kalman filter always outperforms
the Weighted Least Squares (WLS), as

Q, = Val'(yp---,yN) shown in the theorem below:
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PMU locations

Validation Example: e Twisted Pairs
using measurements taken in real measurements of . :
real distribution grids P the power injected by ; ; Rptical e L e
photovoltaic panels % 1Otlme o 20 30 " r— Power cables
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