

Electronics and Power Supply Implants for an Artificial Anal Sphincter

Materials Science & Technology

Dominik Bachmann, Marcel Held, Rolf Brönnimann, Urs Sennhauser

EMPA, Reliability Science and Technology Laboratory, CH-8600 Dübendorf

Introduction

Disorder of continence is a common devastating physical disability often accompanied with social isolation (for Switzerland, see chart [1]).

Actuator Driving and Energy Recovery

The actuator is a low voltage electro active polymer developed by the Biomaterials Science Center (BMC) of the University of Basel.

In-Body Power Supply

A rechargeable Li-Ion battery is implanted to power the sphincter. The battery can be recharged by a transcutaneous energy transfer (TET) system. Implantable FDA approved batteries with a few hundred mAh are available off the shelf (e.g. [2], right figure).

EAP Actuator			Consumption @ V _{Bat}		
AP voltage	36 V		EAP operation per	0.635 mAh	
Nork per cycle [3]	658 mJ		day		
Recovered work per cycle	0 mJ		Electronics operation per day	14.3 ı	mAh
El. charge per cycle @ / _{Bat}	0.0635 mAh	_	Electronics stand by per day	15.2 n	nAh
f of Cycles per Day, n	10		Total per day	≈32 m	۱Ah

Battery						
voltage V _B	3.6 V					
charge capacity Q _{Bat}	325 mAh					
# of batteries	1					
Discharging time						
charge per day	32 mAh					
battery runtime	10 days					
Charging time						
effective charging power	1.92 W					

The actuator can be modeled as a capacitance. Driving electronics to charge and discharge the actuator was developed. A second capacitor is used to store the energy when discharging the sphincter.

Reference:

[1] http://www.bfs.admin.ch/bfs/portal/de/index/themen/14/02/01/key/07/04.html, Bundesamt für Statistik, Neuchâtel (2008/09) [2] http://www.eaglepicher.com/images/Medical/EaglePicher%20Medical%20Brochure%202010.pdf [3] "Report on the experiment with Soft Anal Band (A.M.I.) cuff", E. Fattorini, T. Brusa, (2014)

Acknowledgement: We acknowledge the financial support of nano-tera.ch