

Laser Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules :: CSEM

Soo-Jin Moon,^a Jun-Ho Yum,^a Linus Löfgren,^a Arnaud Walter,^b Laurent Sansonnens,^a Mustapha Benkhaira,^a Sylvain Nicolay,^a Julien Bailat,^a Christophe Ballif ^{a,b}

^aPV-Center, CSEM, Jaquet Droz 1, 2002 Neuchâtel, ^bEPFL, IMT, Photovoltaics and Thin Film Electronics Laboratory

Motivation

What are the advantages of the organometallic halide perovskite?

- 1. Tunable dimensionality
- 2. Tunable optical and electronic property
- **3. Low-cost process-based solution process**
- 4. High molar extinction efficient
- 5. Steep absorption onset and no optically detected deep states

However, most of high efficiencies have been achieved on laboratory scale area below 0.5 cm².

CSEM task is to upscale perovskite solar cell:

CSEM is focusing on optimizing perovskite layer *via* laser scribing for patterning, production-oriented processes such as wet coating, spin-coating or new innovative coating, with the final aim of transferring the high efficiency achieved in the labs to pre-production scale mini-modules.

Laser patterning

- 🕒 W_d < 300 μm
- Precision tool (focus down to 20 μm)
- Non contact process (use of brittle materials in PV: silicon, glass, TCO)
- Fast positioning and process
- Selectivity

	Production Status				
Production Process	Thin film silicon	Cd Te	CIS/ CIGS	Flexibles	
P1 Patterning	**	×	**	**	
P2 Patterning	*	*	1	**	
P3 Patterning	**	**	8	**	
Laser Edge Isolation	**	**	**	**	
Crystallization	S	S	S	Ľ	
Mature technology in industrial production	Ser Part	tially adopted pilot line	Ł	In developmer	

H. BOOTH, J. Laser Micro. Nanoen. 2010, 5, 195-203.

NREL Research Cell Efficieicny Records 2015 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

 $W_a W_d$

Perovskite structure (H. S. Kim et al., J. Phys. Chem. C, 2014, 118, 5615)

Module performance characterization

The relative power losses of the module (f) depend on the trade-off between the dead area loss (f_d) and the TCO resistive loss (f_{TCO})

^(a) S. Haas et al., *Prog. Photovolt.*, 2008, *16*, 195–203. ^(b)N. J. Jeon et al., *Nat. Mater.*, 2014, *13*, 897-903.

P2 pattern optimization by scribing lines

Results

Module	No of P2 lines	W _d (μm)	A _{seg} (cm ²)	F _d (%)
Module A	1	710	0.858	14
Module B	2	750	0.850	15
Module C	4	820	0.836	16

Summary

- 1. Perovskite minimodule: 5 x 5 cm² mini-module prepared by 1 step perovskite solution process and laser patterning.
- **2. < 16 % dead area**: Laser process can achieve dead width smaller than 820 μm.
- 3. V_{oc} : No loss compared to the reference solar cell.
- 4. Efficiency: 6.6 % based on active area and 5.5 % based on aperture area.
- 5. Further work: P2 process optimization and the dead area to < 300 μm or less that 5 % of the active area of the segment.

