

UltrasoundToGo RTD 2013

Deterministic Memory Sharing on Kahn Process Networks: Ultrasound Imaging as a Case Study

Andreas Tretter, Harshavardhan Pandit, Pratyush Kumar and Lothar Thiele Computer Engineering and Networks Laboratory (TIK)

ETHzürich

Kahn Process Networks Implemented on Different Platform Types

Kahn Process Networks:

- Popular programming model
- Independent processes
 with separate memory spaces
- Communication by sending tokens over channels
- Proven to be race-free and scheduling-independent, i.e. deterministic

Distributed Memory Systems:

- Cores communicate via message passing
- KPN model fits the hardware well
- Channels can be implemented 1 to 1
- High efficiency

Shared Memory Systems:

- Cores communicate over memory
- Dissimilar to KPN
- Channels are software-emulated
- Efficient native communication methods cannot be exploited

Memory Sharing in Kahn Process Networks

Applying Deterministic Memory Sharing Techniques to Kahn Process Networks

About the Transformations

- Each transformation preserves the application semantics
- Determinacy is never affected
- ⇒ Correct by construction

Case Study: Medical Ultrasound Imaging

Experimental Evaluation:
On Intel Xeon Phi 5110P accelerator

- 60 cores @ 1053 MHz
- 4 instruction pipelines/core
- Communication over memory/ cache synchronisation

Different configurations tested

- 4000 threads (left), 200 threads
- Dynamic and static mapping
- Traditional channels vs. DMS vs. windowed FIFOs
- Different channel sizes (best performance and good performance/ memory tradeoff shown here)

Classic Classic Tradeoff Windowed DMS DMS Tradeoff