

swiss scientific initiative in health / security / environment systems

Elastomeric electronic skin acting as a waveguide for wireless sensors integration

H. Michaud^a, L. Dejace^a, O. Vorobyov^b, P.-N. Volpe^b, J. Baborowski^b, J.R. Farserotu^b and S.P. Lacour^a

(a): Laboratory for Soft Biolelectronic Interfaces, EPFL, Lausanne (b): CSEM SA, Neuchâtel

Objectives of the project

Engineer a wearable, integrated skin with distributed tactile sensors. Integrate the artificial skin to a glove mounted on a robotic or prosthetic hand. Freedom of movement and comfort enhanced by a non-invasive, skin-like sensing system. Integration and scalability made easy thanks to wireless communication of tactile information.

Fabrication process

Injection molding

3D printing

:: csem

waveguide.

without

Sensing nodes mapped on a prosthetic hand

3

Conformal power distribution system

The conformal power distribution system (CPDS) fulfills 3 roles:

1) powering each sensor nodes.

2) acting as reflective planes for the electromagnetic waves.

3) maintaining electromechanical integrity when the finger bends.

Example of a sensing finger

Integrated sensors nodes are distributed inside an elastomeric membrane. A sensor node is composed of one or several pressure sensors, their associated electronics and an antenna.

> Pressure sensor **Tactile stimulus**

Characterization

Bonding force between elastomer layers

After O₂ plasma activation, bonding force between PDMS and TangoBlack is weaker than the bonding force of PDMS to itself.

Layers 1, 2 & 3 are in **elastomer**. Total thickness < 2 mm.

Structure material for WiseSkin

Two types of elastomer are investigated to form the sensor node carrier (layer 2) : polydimethylsiloxane (PDMS, elastic modulus $E \approx 1.5$ MPa) that has to be molded to host the sensor node, and TangoBlack (E≈0.3 MPa), a proprietary, 3D printable elastomer.

Electromagnetic waves propagation

Scattering parameters of two UHF antennas separated with measured or by are 5 cm Stretchable metallization reduces losses by 28 dB.

Molded PDMS sample

3D printed TangoBlack sample

Conclusion and future work

- Elastomer materials can be patterned to enable insertion of wireless sensing nodes in a skin-like system. Incorporating a stretchable waveguide results in a significant reduction of losses for wireless communication.
- Further experiments will include electromechanical testing of the sensor nodes embedded in the skin to assert the robustness of the system.

References

[1] X. Chen, L. Zhang, J.H. Sun, H. Li, and D.F. Cui, "A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine.", Journal of Micromechanics and Microengineering, 24(9), 095006, 2014 [2] C. Antfolk, A. Björkman, S.-O. Frank, F. Sebelius, G. Lundborg, and B. Rosen, "Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin.," J. Rehabil. Med., vol. 44, no. 8, pp. 702–7, Jul. 2012.