

Low-Power, Sub-Microsecond, Multi-Hop Time Synchronization with COTS Components

Roman Lim, Balz Maag, Jan Beutel, Lothar Thiele

Computer Engineering and Networks Lab, Swiss Federal Institute of Technology (ETH) Zurich

Motivation

Tight time synchronization is needed for applications such as localization or accurate control in distributed systems.

1 Impact of Radio Modulation

Errors in time information exchange due to *measurement errors* and

Sub-microsecond time synchronization for a distributed system can be achieved using GPS receivers. For many applications this is not a feasible approach because (1) GPS receivers are costly, both economically and power-wise, and (2) they do not work in places without satellite reception, e.g. indoors.

To provide an *economic solution*, we aim to push the limits of *state-of-the-art* (> 2 µs) time synchronization using a *wireless multi-hop network built of cheap commercial of the shelf (COTS) components*.

MSP430-CCRF module, providing a CC430 system-on-chip, 13MHz clock, GFSK/MSK/OOK modulation, price ~ 15€

2 Impact of Propagation Delay

Electromagnetic waves travel at speed of light. This leads to *different propagation delays* t_{pd} between nodes with different physical distances. Example:

 $d_1 = 50 m$ $t_{pd1} = c \cdot d_1 = 166.6 ns$ $d_2 = 5 m$ $t_{pd2} = c \cdot d_2 = 16.6 ns$

Varying propagation delays must be considered for

varying channel characteristics.

Measurement accuracy and packet delay is different for *different radio modulation techniques*.

Different individual clock speeds due to temperature, aging, manufacturing or supply voltages.

Implications on time synchronization:

 (1) Synchronization *needs to adapt to changing clocks*, e.g., by doing periodic resynchronizations.

- 2 Approaches:
- Estimate an average propagation delay based on the *round-trip time of the whole network*.

2) Let nodes learn the propagation delay to neighboring nodes using *local round-trip measurements*.

Evaluation Setup and Results

25 nodes spread over an office floor. Two different protocol versions (both using **1 MSK** modulation and **3 optimal history size**): 90 **1) Locally estimated** average propagation delay 80 **2) Globally estimated** average propagation delay 70

Synchronization period of 1 s.

CDF of *maximal* clock skew

GPS receivers generate reference events at the same time on 7 nodes. Global time stamps of these events are used to determine clock skew.

Evaluation metric: maximal clock skew between *any* GPS-node and node 0.

Both protocols achieve low synchronization error, while the *global round trip estimate outperforms the local estimate by a factor of 3*.

Outdoor node

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

