

swiss scientific initiative in health / security / environment systems

http://BodyPoweredSenSE.ch

BodyPoweredSenSE

Elham Barzegaran and Maria G. Knyazeva

Centre Hospitalier Universitaire Vaudois and University of Lausanne

UNIL | Université de Lausai

FNSNF

- EEG system: 64-channel eegosportsTM
- Subjects: 23 young and 18 middle-age healthy adults (5 subjects are excluded due to the low EEG quality)

•EEG experiment: Resting state with eyes closed, Haptic objects' comparison and Haptic Navigation

Haptic object comparison

•This task was designed to relationship the test between AR structure and object recognition abilities in people with different ages.

Haptic Navigation

• This task was designed to test the relationship between AR structure and navigation abilities in people of different ages.

Methods

By reducing the number of electrodes to 19, alpha-rhythm components can be detected in 80% of subjects.

RTD 2013

Reducing epoch of analysis

To optimize the recording time, we analyzed 10, 5, and 2 s epochs for 19sensor EEGs and were able to detect all the ARC using the epoch ≥ 5 s.

• EEG Preprocessing Band-pass: 1-45 Hz, edited offline

• PSD for each channel: Welch's method, Hann windowing 10 second segments

 Parallel factor analysis Decompose data to the underlying components

Conclusion

• In the young subjects, individually stable AR structure consists of 2 or 3 components reactive to tasks.

• With age the number of alpha components decreases: from 3-2 ARC in the young people to 2-1 ARC in middle aged people.

• For extracting ARC, 5-s EEG epochs recorded with at least 19 posteriorly located electrodes are required.

• We expect that detailed knowledge of alpha rhythm structure will be useful for monitoring age-related neurodegenerative processes in the human brain with wearable EEG.

