

swiss scientific initiative in health / security / environment systems

MIXSEL2

RTD 2013

Sub-100-fs SESAM modelocked VECSEL D. Waldburger, S. M. Link, C. G. E. Alfieri, M. Golling, E. Gini and U. Keller ETH Zurich, Institute for Quantum Electronics, Ultrafast Laser Physics

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

Applications of ultrafast semiconductor disk lasers (SDL)

VECSEL gain characterisation

Spectral characterisation

• Spectrally resolved reflectivity measurement of a pumped VECSEL

Saturation characterisation

• Fluence depending reflectivity measurement of a pumped VECSEL

Our Goal: Self-referenceable frequency combs

- Down-convert optical signals (THz) into the microwave range (MHz/GHz)
- Need to stabilise:
 - Repetition rate
 - Carrier envelope offset frequency (f_{CEO})^[1]
- Benefits from GHz repetition rates:
 - Wider line spacing: better access
 - High power per comb line
 - Compact systems

[1] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327-332 (1999)

SESAM modelocked VECSEL

Comparison with previous VECSEL reveals as expected:

- Increased gain bandwidth
- Reduces small signal gain

but unforeseen:

• Unchanged saturation fluence

	previous ^[2]	new
growth method	MBE	ΜΟΥΡΕ
active region	7 QWs/QDs	10 SCQWs
FE	1.14/1.25	0.52
λc	960 nm	1030 nm
F _{sat}	32 - 54 μm/cm ²	30 - 51 µm/cm²
g ss	3.6 - 5.3 %	2.8 - 3.2 %
<i>Э</i> FWHM	26 - 30 nm	50 - 57 nm
F 2	20 - 25 mJ/cm ²	17 mJ/cm ²

[2] M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 4136-4148 (2012).

- Overview of the state-of-the-art semiconductor disk lasers in the 1- μ m wavelength range
- Trade-off between pulse duration and power

Overview

- Vertical external-cavity surface-emitting laser
- Distributed Bragg reflector AIAs/GaAs-pairs grown on GaAs substrate for laser reflection
- Active region: Laser light amplification in quantum wells (QW)
- Antireflection-coating: Minimizing pump reflection and optimizing group delay dispersion

- Semiconductor saturable absorber mirror
- Induce self-starting modelocking operation with quasi-solitons

Numerical pulse formation simulation

Simulation model^[3]

• Based on macroscopic measurable parameters

Results

Goals for short pulses:

• Broadband gain

Outlook

- Near zero and flat group delay dispersion
- High gain saturation fluency

QWs AR

Modelocking result

DBR

• Shortest pulses from any fundamentally modelocked semiconductor disk laser

pulse	repetition	average
duration	rate	power
96 fs	1.63 GHz	100 mW
center	spectrum	peak power
wavelength	FWHM	
1034 nm	17.5 nm	560 W

• Increased gain bandwidths require stricter demands on the cavity dispersion

[3] O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, Applied Physics B 113,

Coherent Octave-Spanning Supercontinuum

Next step: Increasing the output power for direct supercontinuum generation

Ultimate goal: Fully stabilized (repetition rate & CEOfrequency) frequency comb from a compact, low cost SDL

